dathi103 commited on
Commit
2d19cbc
1 Parent(s): c6ce013

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [dathi103/gbert-job-extended](https://huggingface.co/dathi103/gbert-job-extended) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.1070
19
- - Hard: {'precision': 0.7168742921857305, 'recall': 0.79125, 'f1': 0.7522281639928698, 'number': 800}
20
- - Soft: {'precision': 0.7176470588235294, 'recall': 0.7870967741935484, 'f1': 0.7507692307692306, 'number': 155}
21
- - Overall Precision: 0.7170
22
- - Overall Recall: 0.7906
23
- - Overall F1: 0.7520
24
- - Overall Accuracy: 0.9641
25
 
26
  ## Model description
27
 
@@ -50,13 +50,13 @@ The following hyperparameters were used during training:
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
- |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | No log | 1.0 | 158 | 0.1125 | {'precision': 0.5969387755102041, 'recall': 0.73125, 'f1': 0.6573033707865169, 'number': 800} | {'precision': 0.6706586826347305, 'recall': 0.7225806451612903, 'f1': 0.6956521739130435, 'number': 155} | 0.6077 | 0.7298 | 0.6632 | 0.9560 |
56
- | No log | 2.0 | 316 | 0.1005 | {'precision': 0.6616862326574173, 'recall': 0.775, 'f1': 0.7138744962579161, 'number': 800} | {'precision': 0.6344086021505376, 'recall': 0.7612903225806451, 'f1': 0.6920821114369502, 'number': 155} | 0.6572 | 0.7728 | 0.7103 | 0.9605 |
57
- | No log | 3.0 | 474 | 0.0991 | {'precision': 0.7067415730337079, 'recall': 0.78625, 'f1': 0.744378698224852, 'number': 800} | {'precision': 0.625, 'recall': 0.7741935483870968, 'f1': 0.69164265129683, 'number': 155} | 0.6922 | 0.7843 | 0.7354 | 0.9645 |
58
- | 0.1191 | 4.0 | 632 | 0.1045 | {'precision': 0.7178329571106095, 'recall': 0.795, 'f1': 0.7544483985765125, 'number': 800} | {'precision': 0.7245508982035929, 'recall': 0.7806451612903226, 'f1': 0.751552795031056, 'number': 155} | 0.7189 | 0.7927 | 0.7540 | 0.9661 |
59
- | 0.1191 | 5.0 | 790 | 0.1070 | {'precision': 0.7168742921857305, 'recall': 0.79125, 'f1': 0.7522281639928698, 'number': 800} | {'precision': 0.7176470588235294, 'recall': 0.7870967741935484, 'f1': 0.7507692307692306, 'number': 155} | 0.7170 | 0.7906 | 0.7520 | 0.9641 |
60
 
61
 
62
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [dathi103/gbert-job-extended](https://huggingface.co/dathi103/gbert-job-extended) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.1217
19
+ - Hard: {'precision': 0.7340153452685422, 'recall': 0.790633608815427, 'f1': 0.7612732095490715, 'number': 363}
20
+ - Soft: {'precision': 0.6911764705882353, 'recall': 0.7121212121212122, 'f1': 0.7014925373134329, 'number': 66}
21
+ - Overall Precision: 0.7277
22
+ - Overall Recall: 0.7786
23
+ - Overall F1: 0.7523
24
+ - Overall Accuracy: 0.9661
25
 
26
  ## Model description
27
 
 
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
+ | No log | 1.0 | 178 | 0.1108 | {'precision': 0.6256038647342995, 'recall': 0.7134986225895317, 'f1': 0.6666666666666667, 'number': 363} | {'precision': 0.5606060606060606, 'recall': 0.5606060606060606, 'f1': 0.5606060606060606, 'number': 66} | 0.6167 | 0.6900 | 0.6513 | 0.9593 |
56
+ | No log | 2.0 | 356 | 0.1027 | {'precision': 0.6860759493670886, 'recall': 0.7465564738292011, 'f1': 0.7150395778364115, 'number': 363} | {'precision': 0.7096774193548387, 'recall': 0.6666666666666666, 'f1': 0.6875, 'number': 66} | 0.6893 | 0.7343 | 0.7111 | 0.9639 |
57
+ | 0.1153 | 3.0 | 534 | 0.1085 | {'precision': 0.7085427135678392, 'recall': 0.7768595041322314, 'f1': 0.7411300919842312, 'number': 363} | {'precision': 0.6533333333333333, 'recall': 0.7424242424242424, 'f1': 0.6950354609929078, 'number': 66} | 0.6998 | 0.7716 | 0.7339 | 0.9658 |
58
+ | 0.1153 | 4.0 | 712 | 0.1163 | {'precision': 0.6987341772151898, 'recall': 0.7603305785123967, 'f1': 0.7282321899736148, 'number': 363} | {'precision': 0.7121212121212122, 'recall': 0.7121212121212122, 'f1': 0.7121212121212122, 'number': 66} | 0.7007 | 0.7529 | 0.7258 | 0.9657 |
59
+ | 0.1153 | 5.0 | 890 | 0.1217 | {'precision': 0.7340153452685422, 'recall': 0.790633608815427, 'f1': 0.7612732095490715, 'number': 363} | {'precision': 0.6911764705882353, 'recall': 0.7121212121212122, 'f1': 0.7014925373134329, 'number': 66} | 0.7277 | 0.7786 | 0.7523 | 0.9661 |
60
 
61
 
62
  ### Framework versions