End of training
Browse files
README.md
CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [dathi103/gbert-job-extended](https://huggingface.co/dathi103/gbert-job-extended) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Hard: {'precision': 0.
|
20 |
-
- Soft: {'precision': 0.
|
21 |
-
- Overall Precision: 0.
|
22 |
-
- Overall Recall: 0.
|
23 |
-
- Overall F1: 0.
|
24 |
-
- Overall Accuracy: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -50,13 +50,13 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Hard
|
54 |
-
|
55 |
-
| No log | 1.0 |
|
56 |
-
| No log | 2.0 |
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [dathi103/gbert-job-extended](https://huggingface.co/dathi103/gbert-job-extended) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1217
|
19 |
+
- Hard: {'precision': 0.7340153452685422, 'recall': 0.790633608815427, 'f1': 0.7612732095490715, 'number': 363}
|
20 |
+
- Soft: {'precision': 0.6911764705882353, 'recall': 0.7121212121212122, 'f1': 0.7014925373134329, 'number': 66}
|
21 |
+
- Overall Precision: 0.7277
|
22 |
+
- Overall Recall: 0.7786
|
23 |
+
- Overall F1: 0.7523
|
24 |
+
- Overall Accuracy: 0.9661
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
55 |
+
| No log | 1.0 | 178 | 0.1108 | {'precision': 0.6256038647342995, 'recall': 0.7134986225895317, 'f1': 0.6666666666666667, 'number': 363} | {'precision': 0.5606060606060606, 'recall': 0.5606060606060606, 'f1': 0.5606060606060606, 'number': 66} | 0.6167 | 0.6900 | 0.6513 | 0.9593 |
|
56 |
+
| No log | 2.0 | 356 | 0.1027 | {'precision': 0.6860759493670886, 'recall': 0.7465564738292011, 'f1': 0.7150395778364115, 'number': 363} | {'precision': 0.7096774193548387, 'recall': 0.6666666666666666, 'f1': 0.6875, 'number': 66} | 0.6893 | 0.7343 | 0.7111 | 0.9639 |
|
57 |
+
| 0.1153 | 3.0 | 534 | 0.1085 | {'precision': 0.7085427135678392, 'recall': 0.7768595041322314, 'f1': 0.7411300919842312, 'number': 363} | {'precision': 0.6533333333333333, 'recall': 0.7424242424242424, 'f1': 0.6950354609929078, 'number': 66} | 0.6998 | 0.7716 | 0.7339 | 0.9658 |
|
58 |
+
| 0.1153 | 4.0 | 712 | 0.1163 | {'precision': 0.6987341772151898, 'recall': 0.7603305785123967, 'f1': 0.7282321899736148, 'number': 363} | {'precision': 0.7121212121212122, 'recall': 0.7121212121212122, 'f1': 0.7121212121212122, 'number': 66} | 0.7007 | 0.7529 | 0.7258 | 0.9657 |
|
59 |
+
| 0.1153 | 5.0 | 890 | 0.1217 | {'precision': 0.7340153452685422, 'recall': 0.790633608815427, 'f1': 0.7612732095490715, 'number': 363} | {'precision': 0.6911764705882353, 'recall': 0.7121212121212122, 'f1': 0.7014925373134329, 'number': 66} | 0.7277 | 0.7786 | 0.7523 | 0.9661 |
|
60 |
|
61 |
|
62 |
### Framework versions
|