File size: 2,598 Bytes
6704553
37ab3de
6704553
0003822
6704553
 
 
 
37ab3de
 
 
 
 
a6f2fdf
37ab3de
 
 
 
 
 
 
f61d207
e31f34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ab3de
 
 
 
 
 
 
 
 
f61d207
 
 
 
 
 
37ab3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f61d207
37ab3de
 
 
 
f61d207
 
 
37ab3de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
tags:
- summarization
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: distilbart-cnn-12-6-ftn-multi_news
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: summarization
    dataset:
      name: multi_news
      type: multi_news
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 41.6136
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: multi_news
      type: multi_news
      config: default
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 39.6512
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 14.333
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 21.5797
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 35.5793
      verified: true
    - name: loss
      type: loss
      value: 5.507579803466797
      verified: true
    - name: gen_len
      type: gen_len
      value: 132.1745
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbart-cnn-12-6-ftn-multi_news

This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8143
- Rouge1: 41.6136
- Rouge2: 14.7454
- Rougel: 23.3597
- Rougelsum: 36.1973
- Gen Len: 130.874

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 3.8821        | 0.89  | 2000 | 3.8143          | 41.6136 | 14.7454 | 23.3597 | 36.1973   | 130.874 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1