--- license: apache-2.0 tags: - summarization datasets: - multi_news metrics: - rouge model-index: - name: distilbart-cnn-12-6-ftn-multi_news results: - task: name: Sequence-to-sequence Language Modeling type: summarization dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 39.9832 --- # distilbart-cnn-12-6-ftn-multi_news This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 4.0202 - Rouge1: 39.9832 - Rouge2: 13.0653 - Rougel: 22.1761 - Rougelsum: 34.5466 - Gen Len: 132.41 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 4.1427 | 0.89 | 400 | 4.0202 | 39.9832 | 13.0653 | 22.1761 | 34.5466 | 132.41 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1