davidho27941 commited on
Commit
64d7e4c
1 Parent(s): a51129d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 193.70 +/- 83.57
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c482b27e0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c482b27e170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c482b27e200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c482b27e290>", "_build": "<function ActorCriticPolicy._build at 0x7c482b27e320>", "forward": "<function ActorCriticPolicy.forward at 0x7c482b27e3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c482b27e440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c482b27e4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c482b27e560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c482b27e5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c482b27e680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c482b27e710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c482b284340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707113515798597401, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB7mj0rb6I/eBaIPhw6lL7yJ2U+WBRqPgAAAAAAAAAAmmQxvVwXPbon9oW6xutytTeUALvD8Js5AACAPwAAgD8zNFq9XJN1uh7IM7v7FYc26lI6OWZBUjoAAIA/AACAP0Awtr3DPRa6ozX/uqpYorZ1diO7aG0SNgAAAAAAAIA/mnkMvYWz9LmwU5A6KwMwNMzi5bts0Kq5AACAPwAAgD8gzAi+cYgbuwNq8btaGIS5pGlCPFuSajoAAIA/AACAP2Y44L32mC66LH0WuP8unbOITWg7ChAvNwAAgD8AAIA/WuwBvnt0mTlixkW7bV2xN5jcvruFW206AACAPwAAgD8A3LO8XC92ug3RY7qVQC62trUqu7SVmzUAAIA/AACAP7Nszb1cf1+6us9BO9c6Cjbvfhc7UL5eugAAAAAAAIA/hlwqvlzscLxzJfW7vTRsuiTh1T3yCT87AACAPwAAgD8A4nK91OSxPzKaDL++Y1u+UIBUvPrgSL4AAAAAAAAAANpS8L0UKIW6GzYpulxuijYMuOK6ZgNFOQAAgD8AAIA/gD9EPVP+Rj+DK/w76vGHvvQ9iDxKXRY9AAAAAAAAAACAaum9SJePug5FgbuVmyQ5hYL9OW8tDboAAIA/AACAP3Monb0pQHC6v207uxGquDXJQIg65SxbOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFvUyon8baSMAWyUTegDjAF0lEdAk308h5gPVnV9lChoBkdAYM2lXRw6yWgHTegDaAhHQJN9n/tIClt1fZQoaAZHQGN5Yl6Z6UtoB03oA2gIR0CTffMi8nNQdX2UKGgGR0Bd8+I2wV0taAdN6ANoCEdAk38QVj7Q9nV9lChoBkdAYmJoYekpJGgHTegDaAhHQJN/17BwdbR1fZQoaAZHQFpRdLg4wRJoB03oA2gIR0CTgOo+wC8wdX2UKGgGR0BeQm4I8hcJaAdN6ANoCEdAk4Tq7iADrHV9lChoBkdAIY7PppvgnGgHTQwBaAhHQJOFu1QZXMh1fZQoaAZHQGPtzZg5R0loB03oA2gIR0CTh8vmHP/rdX2UKGgGR0Bee/ci4axYaAdN6ANoCEdAk47xEroW6HV9lChoBkdARspgqmTC+GgHS/xoCEdAk5YzgqEvkHV9lChoBkdAYt/lAeJYT2gHTegDaAhHQJOX9+mWMS91fZQoaAZHQGBXvegte2NoB03oA2gIR0CTq6Y+0PYndX2UKGgGR0BjvnS+g13uaAdN6ANoCEdAk7MovSMLnnV9lChoBkdAYXpqVyFPBWgHTegDaAhHQJPLgYUFjd51fZQoaAZHQGcGA7xNIsloB03oA2gIR0CTzt8wpON6dX2UKGgGR0BcMSdz4k/saAdN6ANoCEdAk896XjU/fXV9lChoBkdAZp6l1KXfImgHTegDaAhHQJPQEE0SAYp1fZQoaAZHQGFOy8an755oB03oA2gIR0CT0Gu3trsTdX2UKGgGR0BfeBhDw6QvaAdN6ANoCEdAk9CxyCFsYXV9lChoBkdAYxHXHzYmLWgHTegDaAhHQJPRpD9fkWB1fZQoaAZHQGN5qp1ie/ZoB03oA2gIR0CT0kzAN5MUdX2UKGgGR0Biyld5Y5ktaAdN6ANoCEdAk9M0kSmIkHV9lChoBkdAXi/4qPOpsGgHTegDaAhHQJPWdW2gFot1fZQoaAZHQGZdDGDL8rJoB03oA2gIR0CT2PW+XZ5BdX2UKGgGR0Bg4yMglnh9aAdN6ANoCEdAk95t4qwyI3V9lChoBkdAYEzIHTqjamgHTegDaAhHQJPj1o8IRiB1fZQoaAZHQGUf9Jaq0dBoB03oA2gIR0CT5Vs/IKc/dX2UKGgGR0BdPwXQ+lj3aAdN6ANoCEdAk+gYSg5BC3V9lChoBkdAcE9EJSiudWgHTf0BaAhHQJP/V2IO6NF1fZQoaAZHQEinQaaTfSBoB00EAWgIR0CUABZx7zCldX2UKGgGR0BlxjF2mpEQaAdN6ANoCEdAlAEUtAcDKnV9lChoBkdARujP0I1LrWgHTQgBaAhHQJQFzVDrqt51fZQoaAZHQGHEZ57gKnhoB03oA2gIR0CUFcHHFPzndX2UKGgGR0BhSArYoRZmaAdN6ANoCEdAlBnpSBK+SXV9lChoBkdAYYuDlo11n2gHTegDaAhHQJQa5WkrPMV1fZQoaAZHQGLFaD5CWu5oB03oA2gIR0CUG8rELpiadX2UKGgGR0BgPeTgVGkOaAdN6ANoCEdAlBxQEZBLPHV9lChoBkdAZIHDkU9IPWgHTegDaAhHQJQcyHSF49p1fZQoaAZHQGSpmGucME1oB03oA2gIR0CUHm8Hv+fidX2UKGgGR0BauUnb7CSBaAdN6ANoCEdAlB9/BvaURnV9lChoBkdAZ4aHKOktVmgHTegDaAhHQJQkv6guh9N1fZQoaAZHQGLWvZh8YyhoB03oA2gIR0CUJ/70nPVvdX2UKGgGR0BHIG29cry2aAdNGQFoCEdAlCpQ+IMz/XV9lChoBkdAYAcV3Ux20WgHTegDaAhHQJQ2sb3oLXt1fZQoaAZHQECxIq9XcQBoB00oAWgIR0CUNsKDTSb6dX2UKGgGR0BgWPzQNTcZaAdN6ANoCEdAlDmnJxNqQHV9lChoBkdAZe69Mbm2cGgHTegDaAhHQJRRMnKGL1p1fZQoaAZHQGDohaC+UQloB03oA2gIR0CUUfSa3I+4dX2UKGgGR0Bgqw2XLNfPaAdN6ANoCEdAlFLpz5oGp3V9lChoBkdAZ32OwPiDNGgHTegDaAhHQJRXTeenQ6Z1fZQoaAZHQCSj5mAbyYpoB00TAWgIR0CUW+PZIxxldX2UKGgGR0BkKCNVBD5TaAdN6ANoCEdAlGXHmaH9FXV9lChoBkdAYlp4vexfOWgHTegDaAhHQJRp08s+V1R1fZQoaAZHQGJPocBEKE5oB03oA2gIR0CUanp/PPcBdX2UKGgGR0Bg5ROJtSAIaAdN6ANoCEdAlGrfBJqZdHV9lChoBkdAY1fhJAdGRWgHTegDaAhHQJRrN38n/kx1fZQoaAZHQF251KoQ4CJoB03oA2gIR0CUbG/NJOFhdX2UKGgGR0BmC93Sro4daAdN6ANoCEdAlG0twBHTZ3V9lChoBkdAY+mYUFjd6GgHTegDaAhHQJR0/37DVH51fZQoaAZHQDzVNUOuq3poB00EAWgIR0CUduHMEA5rdX2UKGgGR0BmpXnyNGViaAdN6ANoCEdAlHemvB7/oHV9lChoBkdAPx+w9q1w52gHTSYBaAhHQJR9IZMtbs51fZQoaAZHQGMIZPEbYK9oB03oA2gIR0CUgsjVhCtzdX2UKGgGR0Bijb3Zf2K3aAdN6ANoCEdAlILQzk6tDHV9lChoBkdAYx4YlY2bX2gHTegDaAhHQJSZhaGHpKV1fZQoaAZHQGKHR/EwWWRoB03oA2gIR0CUmiMPBi1BdX2UKGgGR0Bier6P8yeqaAdN6ANoCEdAlJsCjxkNF3V9lChoBkdAZvPxKg7HQ2gHTegDaAhHQJSe6om5UcZ1fZQoaAZHQAQRfOUt7KJoB00EAWgIR0CUn/JFb3XadX2UKGgGR0BffVgDzRQaaAdN6ANoCEdAlKLGMCLde3V9lChoBkdAREMDr7fpEGgHS/hoCEdAlKaJSNwR5HV9lChoBkdAY0NXQtz0YmgHTegDaAhHQJSsksAeaKF1fZQoaAZHQGbr7Fjurp9oB03oA2gIR0CUsEF0PpY+dX2UKGgGR0BiYRi1AqusaAdN6ANoCEdAlLCY86mwaHV9lChoBkdAXtw7ZFocrGgHTegDaAhHQJSw5lRP4211fZQoaAZHQGbiid8Rcu9oB03oA2gIR0CUsfG6f8MvdX2UKGgGR0Bkycq4H5aeaAdN6ANoCEdAlLwkg4ffXXV9lChoBkdAZ5smHgxagWgHTegDaAhHQJS9/PgNwzd1fZQoaAZHQF/3Vea8YhtoB03oA2gIR0CUvqaHbh3rdX2UKGgGR0BnxQvN/vv0aAdN6ANoCEdAlMNJwCKaX3V9lChoBkdAYUES9ugpSmgHTegDaAhHQJTJ8b+98JF1fZQoaAZHQGHY4yGi5/doB03oA2gIR0CU0nrv9cbBdX2UKGgGR0AwNUhmoR7JaAdL/GgIR0CU5elj3EhrdX2UKGgGR0BlG05S3solaAdN6ANoCEdAlObny/bj+HV9lChoBkdAYKbtpEhJRWgHTegDaAhHQJTruVQhwER1fZQoaAZHQF+bnbqQiiZoB03oA2gIR0CU7P0EHMUzdX2UKGgGR0BhBzn1WbPQaAdN6ANoCEdAlPCDOC5Et3V9lChoBkdAY4Ummce8w2gHTegDaAhHQJT0cJSiudR1fZQoaAZHQGO23PzFuNxoB03oA2gIR0CU+ZrBCUosdX2UKGgGR0BhxSK508vFaAdN6ANoCEdAlP20zoEB83V9lChoBkdAY0gmG/N7jWgHTegDaAhHQJT+FpsXSBt1fZQoaAZHQGPN3VLBbfRoB03oA2gIR0CU/m3aSLZSdX2UKGgGR0Bh6kaIeo1laAdN6ANoCEdAlP+JvDP4VXV9lChoBkdAY29S4vvjO2gHTegDaAhHQJUMbm/336B1fZQoaAZHQGJjC2Dxsl9oB03oA2gIR0CVDoY4ACGOdX2UKGgGR0BlT4V2zOX3aAdN6ANoCEdAlQ820Z3s5XV9lChoBkdAYnnDxb0OE2gHTegDaAhHQJUcIaS9ugp1fZQoaAZHQF6a0iQkondoB03oA2gIR0CVJYt1ZDArdX2UKGgGR0BhYj1oQFs6aAdN6ANoCEdAlSbKkVN5+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9de5d880632f9bb0ad52fa0b06112370299cf8856c48e390af2d3dc1aa0fd66e
3
+ size 148068
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c482b27e0e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c482b27e170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c482b27e200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c482b27e290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c482b27e320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c482b27e3b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c482b27e440>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c482b27e4d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c482b27e560>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c482b27e5f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c482b27e680>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c482b27e710>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c482b284340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1707113515798597401,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB7mj0rb6I/eBaIPhw6lL7yJ2U+WBRqPgAAAAAAAAAAmmQxvVwXPbon9oW6xutytTeUALvD8Js5AACAPwAAgD8zNFq9XJN1uh7IM7v7FYc26lI6OWZBUjoAAIA/AACAP0Awtr3DPRa6ozX/uqpYorZ1diO7aG0SNgAAAAAAAIA/mnkMvYWz9LmwU5A6KwMwNMzi5bts0Kq5AACAPwAAgD8gzAi+cYgbuwNq8btaGIS5pGlCPFuSajoAAIA/AACAP2Y44L32mC66LH0WuP8unbOITWg7ChAvNwAAgD8AAIA/WuwBvnt0mTlixkW7bV2xN5jcvruFW206AACAPwAAgD8A3LO8XC92ug3RY7qVQC62trUqu7SVmzUAAIA/AACAP7Nszb1cf1+6us9BO9c6Cjbvfhc7UL5eugAAAAAAAIA/hlwqvlzscLxzJfW7vTRsuiTh1T3yCT87AACAPwAAgD8A4nK91OSxPzKaDL++Y1u+UIBUvPrgSL4AAAAAAAAAANpS8L0UKIW6GzYpulxuijYMuOK6ZgNFOQAAgD8AAIA/gD9EPVP+Rj+DK/w76vGHvvQ9iDxKXRY9AAAAAAAAAACAaum9SJePug5FgbuVmyQ5hYL9OW8tDboAAIA/AACAP3Monb0pQHC6v207uxGquDXJQIg65SxbOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFvUyon8baSMAWyUTegDjAF0lEdAk308h5gPVnV9lChoBkdAYM2lXRw6yWgHTegDaAhHQJN9n/tIClt1fZQoaAZHQGN5Yl6Z6UtoB03oA2gIR0CTffMi8nNQdX2UKGgGR0Bd8+I2wV0taAdN6ANoCEdAk38QVj7Q9nV9lChoBkdAYmJoYekpJGgHTegDaAhHQJN/17BwdbR1fZQoaAZHQFpRdLg4wRJoB03oA2gIR0CTgOo+wC8wdX2UKGgGR0BeQm4I8hcJaAdN6ANoCEdAk4Tq7iADrHV9lChoBkdAIY7PppvgnGgHTQwBaAhHQJOFu1QZXMh1fZQoaAZHQGPtzZg5R0loB03oA2gIR0CTh8vmHP/rdX2UKGgGR0Bee/ci4axYaAdN6ANoCEdAk47xEroW6HV9lChoBkdARspgqmTC+GgHS/xoCEdAk5YzgqEvkHV9lChoBkdAYt/lAeJYT2gHTegDaAhHQJOX9+mWMS91fZQoaAZHQGBXvegte2NoB03oA2gIR0CTq6Y+0PYndX2UKGgGR0BjvnS+g13uaAdN6ANoCEdAk7MovSMLnnV9lChoBkdAYXpqVyFPBWgHTegDaAhHQJPLgYUFjd51fZQoaAZHQGcGA7xNIsloB03oA2gIR0CTzt8wpON6dX2UKGgGR0BcMSdz4k/saAdN6ANoCEdAk896XjU/fXV9lChoBkdAZp6l1KXfImgHTegDaAhHQJPQEE0SAYp1fZQoaAZHQGFOy8an755oB03oA2gIR0CT0Gu3trsTdX2UKGgGR0BfeBhDw6QvaAdN6ANoCEdAk9CxyCFsYXV9lChoBkdAYxHXHzYmLWgHTegDaAhHQJPRpD9fkWB1fZQoaAZHQGN5qp1ie/ZoB03oA2gIR0CT0kzAN5MUdX2UKGgGR0Biyld5Y5ktaAdN6ANoCEdAk9M0kSmIkHV9lChoBkdAXi/4qPOpsGgHTegDaAhHQJPWdW2gFot1fZQoaAZHQGZdDGDL8rJoB03oA2gIR0CT2PW+XZ5BdX2UKGgGR0Bg4yMglnh9aAdN6ANoCEdAk95t4qwyI3V9lChoBkdAYEzIHTqjamgHTegDaAhHQJPj1o8IRiB1fZQoaAZHQGUf9Jaq0dBoB03oA2gIR0CT5Vs/IKc/dX2UKGgGR0BdPwXQ+lj3aAdN6ANoCEdAk+gYSg5BC3V9lChoBkdAcE9EJSiudWgHTf0BaAhHQJP/V2IO6NF1fZQoaAZHQEinQaaTfSBoB00EAWgIR0CUABZx7zCldX2UKGgGR0BlxjF2mpEQaAdN6ANoCEdAlAEUtAcDKnV9lChoBkdARujP0I1LrWgHTQgBaAhHQJQFzVDrqt51fZQoaAZHQGHEZ57gKnhoB03oA2gIR0CUFcHHFPzndX2UKGgGR0BhSArYoRZmaAdN6ANoCEdAlBnpSBK+SXV9lChoBkdAYYuDlo11n2gHTegDaAhHQJQa5WkrPMV1fZQoaAZHQGLFaD5CWu5oB03oA2gIR0CUG8rELpiadX2UKGgGR0BgPeTgVGkOaAdN6ANoCEdAlBxQEZBLPHV9lChoBkdAZIHDkU9IPWgHTegDaAhHQJQcyHSF49p1fZQoaAZHQGSpmGucME1oB03oA2gIR0CUHm8Hv+fidX2UKGgGR0BauUnb7CSBaAdN6ANoCEdAlB9/BvaURnV9lChoBkdAZ4aHKOktVmgHTegDaAhHQJQkv6guh9N1fZQoaAZHQGLWvZh8YyhoB03oA2gIR0CUJ/70nPVvdX2UKGgGR0BHIG29cry2aAdNGQFoCEdAlCpQ+IMz/XV9lChoBkdAYAcV3Ux20WgHTegDaAhHQJQ2sb3oLXt1fZQoaAZHQECxIq9XcQBoB00oAWgIR0CUNsKDTSb6dX2UKGgGR0BgWPzQNTcZaAdN6ANoCEdAlDmnJxNqQHV9lChoBkdAZe69Mbm2cGgHTegDaAhHQJRRMnKGL1p1fZQoaAZHQGDohaC+UQloB03oA2gIR0CUUfSa3I+4dX2UKGgGR0Bgqw2XLNfPaAdN6ANoCEdAlFLpz5oGp3V9lChoBkdAZ32OwPiDNGgHTegDaAhHQJRXTeenQ6Z1fZQoaAZHQCSj5mAbyYpoB00TAWgIR0CUW+PZIxxldX2UKGgGR0BkKCNVBD5TaAdN6ANoCEdAlGXHmaH9FXV9lChoBkdAYlp4vexfOWgHTegDaAhHQJRp08s+V1R1fZQoaAZHQGJPocBEKE5oB03oA2gIR0CUanp/PPcBdX2UKGgGR0Bg5ROJtSAIaAdN6ANoCEdAlGrfBJqZdHV9lChoBkdAY1fhJAdGRWgHTegDaAhHQJRrN38n/kx1fZQoaAZHQF251KoQ4CJoB03oA2gIR0CUbG/NJOFhdX2UKGgGR0BmC93Sro4daAdN6ANoCEdAlG0twBHTZ3V9lChoBkdAY+mYUFjd6GgHTegDaAhHQJR0/37DVH51fZQoaAZHQDzVNUOuq3poB00EAWgIR0CUduHMEA5rdX2UKGgGR0BmpXnyNGViaAdN6ANoCEdAlHemvB7/oHV9lChoBkdAPx+w9q1w52gHTSYBaAhHQJR9IZMtbs51fZQoaAZHQGMIZPEbYK9oB03oA2gIR0CUgsjVhCtzdX2UKGgGR0Bijb3Zf2K3aAdN6ANoCEdAlILQzk6tDHV9lChoBkdAYx4YlY2bX2gHTegDaAhHQJSZhaGHpKV1fZQoaAZHQGKHR/EwWWRoB03oA2gIR0CUmiMPBi1BdX2UKGgGR0Bier6P8yeqaAdN6ANoCEdAlJsCjxkNF3V9lChoBkdAZvPxKg7HQ2gHTegDaAhHQJSe6om5UcZ1fZQoaAZHQAQRfOUt7KJoB00EAWgIR0CUn/JFb3XadX2UKGgGR0BffVgDzRQaaAdN6ANoCEdAlKLGMCLde3V9lChoBkdAREMDr7fpEGgHS/hoCEdAlKaJSNwR5HV9lChoBkdAY0NXQtz0YmgHTegDaAhHQJSsksAeaKF1fZQoaAZHQGbr7Fjurp9oB03oA2gIR0CUsEF0PpY+dX2UKGgGR0BiYRi1AqusaAdN6ANoCEdAlLCY86mwaHV9lChoBkdAXtw7ZFocrGgHTegDaAhHQJSw5lRP4211fZQoaAZHQGbiid8Rcu9oB03oA2gIR0CUsfG6f8MvdX2UKGgGR0Bkycq4H5aeaAdN6ANoCEdAlLwkg4ffXXV9lChoBkdAZ5smHgxagWgHTegDaAhHQJS9/PgNwzd1fZQoaAZHQF/3Vea8YhtoB03oA2gIR0CUvqaHbh3rdX2UKGgGR0BnxQvN/vv0aAdN6ANoCEdAlMNJwCKaX3V9lChoBkdAYUES9ugpSmgHTegDaAhHQJTJ8b+98JF1fZQoaAZHQGHY4yGi5/doB03oA2gIR0CU0nrv9cbBdX2UKGgGR0AwNUhmoR7JaAdL/GgIR0CU5elj3EhrdX2UKGgGR0BlG05S3solaAdN6ANoCEdAlObny/bj+HV9lChoBkdAYKbtpEhJRWgHTegDaAhHQJTruVQhwER1fZQoaAZHQF+bnbqQiiZoB03oA2gIR0CU7P0EHMUzdX2UKGgGR0BhBzn1WbPQaAdN6ANoCEdAlPCDOC5Et3V9lChoBkdAY4Ummce8w2gHTegDaAhHQJT0cJSiudR1fZQoaAZHQGO23PzFuNxoB03oA2gIR0CU+ZrBCUosdX2UKGgGR0BhxSK508vFaAdN6ANoCEdAlP20zoEB83V9lChoBkdAY0gmG/N7jWgHTegDaAhHQJT+FpsXSBt1fZQoaAZHQGPN3VLBbfRoB03oA2gIR0CU/m3aSLZSdX2UKGgGR0Bh6kaIeo1laAdN6ANoCEdAlP+JvDP4VXV9lChoBkdAY29S4vvjO2gHTegDaAhHQJUMbm/336B1fZQoaAZHQGJjC2Dxsl9oB03oA2gIR0CVDoY4ACGOdX2UKGgGR0BlT4V2zOX3aAdN6ANoCEdAlQ820Z3s5XV9lChoBkdAYnnDxb0OE2gHTegDaAhHQJUcIaS9ugp1fZQoaAZHQF6a0iQkondoB03oA2gIR0CVJYt1ZDArdX2UKGgGR0BhYj1oQFs6aAdN6ANoCEdAlSbKkVN5+3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58fae23a072ac92ad90d69018a1139456433ebd7e4bb9f0e841b1e2944903c05
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a21e5f8ae754f893cbf035803c5665be8ea161db67d24db329eb353ac67aee4
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 193.70187058584116, "std_reward": 83.57242166249208, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-05T06:44:10.348961"}