--- library_name: transformers license: apache-2.0 base_model: NbAiLab/nb-whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-no-fo-100h-5k-steps_v2 results: [] --- # whisper-tiny-no-fo-100h-5k-steps_v2 This model is a fine-tuned version of [NbAiLab/nb-whisper-tiny](https://huggingface.co/NbAiLab/nb-whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5488 - Wer: 56.4778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.08 | 0.2320 | 1000 | 1.0274 | 74.5369 | | 0.7205 | 0.4640 | 2000 | 0.7131 | 63.4588 | | 0.6264 | 0.6961 | 3000 | 0.6096 | 58.1286 | | 0.624 | 0.9281 | 4000 | 0.5642 | 56.2462 | | 0.5163 | 1.1601 | 5000 | 0.5488 | 56.4778 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1