Mary-Cassatt-Oil-Flux-LoKr-Messier-Phase1-EMA-SS1_5-Log-SNR-Blocks

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

No validation prompt was used during training.

None

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 968x1280
  • Skip-layer guidance:

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, A child wearing an elaborate blue silk dress with ruffles and white lace trim sits near a window, the fabric catching soft light.
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, A close portrait of a young child's face with rosy cheeks and delicate features, gentle lighting from a nearby window.
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, Strong window light falls across a child's face and shoulder, creating bold shadows on their blue dress.
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, A child in a blue hat stands by a window.
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, A woman in soft colors holds her baby close.
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, A woman in a detailed white lace dress reads while seated by a window with gauzy curtains, various textures visible in the furnishings.
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, A mother in a textured knit sweater checks her phone while her baby sleeps against her shoulder.
Negative Prompt
blurry, cropped, ugly
Prompt
In the style of a c4ss4tt oil painting, A mother cat grooms her kitten by a sunlit window, their fur catching the light.
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 600
  • Learning rate: 0.0004
    • Learning rate schedule: polynomial
    • Warmup steps: 150
  • Max grad norm: 0.1
  • Effective batch size: 2
    • Micro-batch size: 2
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: flow-matching (extra parameters=['shift=1.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 10.0%

LyCORIS Config:

{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "name_algo_map": {
            "transformer_blocks.0.attn": {
                "factor": 16
            },
            "transformer_blocks.1.attn": {
                "factor": 16
            },
            "transformer_blocks.2.attn": {
                "factor": 16
            },
            "single_transformer_blocks.0.attn": {
                "factor": 16
            },
            "single_transformer_blocks.4.attn": {
                "factor": 16
            },
            "single_transformer_blocks.12.attn": {
                "factor": 16
            },
            "single_transformer_blocks.4.proj_out": {
                "factor": 8
            },
            "single_transformer_blocks.12.proj_out": {
                "factor": 8
            },
            "context_embedder": {
                "factor": 8
            },
            "time_text_embed": {
                "factor": 8
            },
            "proj_out": {
                "factor": 8
            }
        }
    }
}

Datasets

cassatt-512

  • Repeats: 22
  • Total number of images: 50
  • Total number of aspect buckets: 2
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

cassatt-768

  • Repeats: 22
  • Total number of images: 50
  • Total number of aspect buckets: 2
  • Resolution: 0.589824 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

cassatt-1024

  • Repeats: 10
  • Total number of images: 50
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

cassatt-1536

  • Repeats: 10
  • Total number of images: 49
  • Total number of aspect buckets: 13
  • Resolution: 2.359296 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

cassatt-crops-512

  • Repeats: 11
  • Total number of images: 25
  • Total number of aspect buckets: 10
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

cassatt-crops-768

  • Repeats: 11
  • Total number of images: 25
  • Total number of aspect buckets: 1
  • Resolution: 0.589824 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

cassatt-crops-1024

  • Repeats: 5
  • Total number of images: 25
  • Total number of aspect buckets: 17
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

cassatt-crops-1536

  • Repeats: 5
  • Total number of images: 24
  • Total number of aspect buckets: 17
  • Resolution: 2.359296 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'davidrd123/Mary-Cassatt-Oil-Flux-LoKr-Messier-Phase1-EMA-SS1_5-Log-SNR-Blocks'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "An astronaut is riding a horse through the jungles of Thailand."


## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=968,
    height=1280,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")

Exponential Moving Average (EMA)

SimpleTuner generates a safetensors variant of the EMA weights and a pt file.

The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.

The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.

Downloads last month
19
Inference API
Examples

Model tree for davidrd123/Mary-Cassatt-Oil-Flux-LoKr-Messier-Phase1-EMA-SS1_5-Log-SNR-Blocks

Adapter
(10058)
this model