Initial setup
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1873.41 +/- 125.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78e0c19a8b02155b95f7f3581478709c82b5e71a78c2e8cce4332fd0dcb1dd53
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd5b943430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd5b9434c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd5b943550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd5b9435e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcd5b943670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcd5b943700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcd5b943790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd5b943820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcd5b9438b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd5b943940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd5b9439d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd5b943a60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fcd5b93ccc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674203988362803291,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGmJPz840K2/7FDTv/KSAL/QXVC/W9WCP/1z/b/CJ0i/idHGvj1KID9IPAo/49glvj/Ioj8DtSi9PFDnPvvdd793dKi//mm4PPV3bb/b0Zm/WBGHPwfN8byXIJO/bzl5wM6WIz9pmZ4+sF0mPzU/Y7+VRMs/adaUv+zIbr+U/ok/QzPhv7E35T9MTq2/p7KrvxzndT8mdNQ/gUYWP3TrbL/Rc6I/pB6ivEyNjT7zWZ0/haWov9gRBz1+plK/xTL0Pp9yhz9Shyg+o3Kpv9JRgj3OliM/aZmePrBdJj81P2O/gWQRv7YDvT6Y6y4/ylLWPXQHcj5OqRm+jdWxPb4DgD5ugse+A/3Tv/erj7783Qw/HX4fPx1GLb9wnqk9hfxrP7M7lD+gdgFALzg9P2IPzL6oDiQ9VuMZv6hYQT41oOI+zpYjP2mZnj6e9sS/ETKQP54PZL4K2mC8ImQAP8/CBD9usjG//81ewPTMxj4LGa4+AY8kvbW4EsBSs/696uqdvoOvlzynt9W/RGyIviduRD+LYmg/FxPvP46lhD6quc4/zFWSPqGaRr8Umem+5VgaQIdOyL9pmZ4+nvbEvzU/Y7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACc6Yk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANp+jvQAAAAAflPu/AAAAAMw3Sz0AAAAA4STmPwAAAAD7Aji8AAAAAEsr+D8AAAAA3WRmvQAAAAAkg/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxridtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBsjBb4AAAAA4kn7vwAAAACOf8i9AAAAADX8/D8AAAAAsWIJvgAAAAAHKuA/AAAAAGLYzT0AAAAAvpv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgcX7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAJVPM9AAAAAEfw478AAAAAjs80vQAAAAAl79o/AAAAAFcLnL0AAAAAXKDaPwAAAACBucW9AAAAAGap/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABu2My1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9jUFvgAAAAD9Nf+/AAAAALMvnr0AAAAAEE3ePwAAAABePOU7AAAAAFSB+D8AAAAAw5kEPgAAAAAUxe2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKA8MOrhisqMAWyUTegDjAF0lEdApv91Ey+HrXV9lChoBkdAoFzbKs+3Y2gHTegDaAhHQKb/qGL1mJ51fZQoaAZHQKCriIIF/x5oB03oA2gIR0CnABwiaAnVdX2UKGgGR0CfRR0NSZSfaAdN6ANoCEdApwCvQOWjXXV9lChoBkdAnc2YZAIIGGgHTegDaAhHQKcL2q2jO9p1fZQoaAZHQKBr+R/3FkxoB03oA2gIR0CnDA6O5rgwdX2UKGgGR0CdKvKJl8PXaAdN6ANoCEdApwyGchC+lHV9lChoBkdAnhNRYaHbh2gHTegDaAhHQKcNBn7pFCt1fZQoaAZHQJ3Q27e2uxNoB03oA2gIR0CnGGdkSVW0dX2UKGgGR0Cdt6KVpsXSaAdN6ANoCEdApxiimhufmXV9lChoBkdAoBjYChew92gHTegDaAhHQKcZHCIk7fZ1fZQoaAZHQJ532IoE0SBoB03oA2gIR0CnGZ6bnX/YdX2UKGgGR0CenP/Yao/BaAdN6ANoCEdApyUOl0o0AXV9lChoBkdAoD8srK/202gHTegDaAhHQKclRRUm2LJ1fZQoaAZHQJrs8srd30RoB03oA2gIR0CnJbljVhCudX2UKGgGR0CbRKgow22oaAdN6ANoCEdApyY35aePJnV9lChoBkdAma4HIhhYvGgHTegDaAhHQKcxiH+qBEt1fZQoaAZHQJjZ3XlKbrloB03oA2gIR0CnMb7p/wy7dX2UKGgGR0CbHQT3qRlpaAdN6ANoCEdApzIydnTRY3V9lChoBkdAmuU/AO8TSWgHTegDaAhHQKcytU2kzoF1fZQoaAZHQJwDpb5dnkFoB03oA2gIR0CnPd5f2K2sdX2UKGgGR0CZpySyt3fRaAdN6ANoCEdApz4S2fChvnV9lChoBkdAmtDUxdpqRGgHTegDaAhHQKc+i/D+BH11fZQoaAZHQJxTrua4MF5oB03oA2gIR0CnPw3yAhB7dX2UKGgGR0Cb4KM0P6KtaAdN6ANoCEdAp0pT8iwB53V9lChoBkdAm1MWFrVOK2gHTegDaAhHQKdKhxlQMx51fZQoaAZHQJkbJfF72L5oB03oA2gIR0CnSvuYx+KCdX2UKGgGR0CbA5WDpTuOaAdN6ANoCEdAp0t8i+tbLXV9lChoBkdAmV/o7A+IM2gHTegDaAhHQKdWnRfF72N1fZQoaAZHQJuE3NorWiFoB03oA2gIR0CnVtPHT7VKdX2UKGgGR0Cbimzdk8RuaAdN6ANoCEdAp1dF/Ue+23V9lChoBkdAmtpZxWDHwWgHTegDaAhHQKdXwg9Net11fZQoaAZHQJ0SUUXYUWVoB03oA2gIR0CnYt3EIgNgdX2UKGgGR0CbSYlgtvn9aAdN6ANoCEdAp2MTq4YrKHV9lChoBkdAmgHuIInjQ2gHTegDaAhHQKdji+qzZ6F1fZQoaAZHQJXbivaDf3xoB03oA2gIR0CnZBKSgXdkdX2UKGgGR0CcHvPk7wKCaAdN6ANoCEdAp29UNz8xbnV9lChoBkdAmpxDqrzXjGgHTegDaAhHQKdvi2/i5ut1fZQoaAZHQJrkih24d6toB03oA2gIR0CncAaNdZ7pdX2UKGgGR0CdZz3225QQaAdN6ANoCEdAp3CU9IPK+3V9lChoBkdAmgdc32mHg2gHTegDaAhHQKd74ZMtbs51fZQoaAZHQJp6bFsHjZNoB03oA2gIR0CnfBcFINExdX2UKGgGR0CdWesYl6Z6aAdN6ANoCEdAp3yJzHS4OXV9lChoBkdAm/VOHerMkmgHTegDaAhHQKd9Dqs2ehB1fZQoaAZHQJ5pOoESuhdoB03oA2gIR0CniBZFG5MDdX2UKGgGR0Cb9hCiRGMGaAdN6ANoCEdAp4hJ2t+1B3V9lChoBkdAna9fFBIFvGgHTegDaAhHQKeIviVB2Oh1fZQoaAZHQJyMyiGnGbVoB03oA2gIR0CniUDcEeQudX2UKGgGR0CbOugogFHKaAdN6ANoCEdAp5RhjjJdSnV9lChoBkdAmqZ5BgNPQGgHTegDaAhHQKeUmHObAk91fZQoaAZHQJlhbjuKGcpoB03oA2gIR0CnlRAvtdAxdX2UKGgGR0CWj/3ueBhAaAdN6ANoCEdAp5WQkZ75VXV9lChoBkdAnBnxQWN3n2gHTegDaAhHQKeg1ucc2it1fZQoaAZHQJvmQp6QeV9oB03oA2gIR0CnoQyl3yI6dX2UKGgGR0CcXKI5YHPeaAdN6ANoCEdAp6GBnWattHV9lChoBkdAm4XcwDeTFGgHTegDaAhHQKeiB/GVAzJ1fZQoaAZHQJ40b4SHuZ1oB03oA2gIR0CnrRdph4MXdX2UKGgGR0CZzNtCiRGMaAdN6ANoCEdAp61R2dNFjXV9lChoBkdAll2pXp4bCWgHTegDaAhHQKetyRZEDyR1fZQoaAZHQJeRhhgE2YRoB03oA2gIR0CnrkljVhCudX2UKGgGR0CZnmrp7kXDaAdN6ANoCEdAp7mXNA1NxnV9lChoBkdAlNY4D9wWFmgHTegDaAhHQKe5zj6N2kl1fZQoaAZHQJkZxwl0HQhoB03oA2gIR0CnukRf4REndX2UKGgGR0CNh9KOktVaaAdN6ANoCEdAp7rDilzltHV9lChoBkdAmF+1+AmReWgHTegDaAhHQKfF/++dsi11fZQoaAZHQJd3qwNb1RNoB03oA2gIR0CnxjQbuMMrdX2UKGgGR0Caq3gQYk3TaAdN6ANoCEdAp8anNs3yZ3V9lChoBkdAmYkKn3ta6mgHTegDaAhHQKfHK078vVV1fZQoaAZHQJsTaoOx0MhoB03oA2gIR0Cn0obbDdgwdX2UKGgGR0CYva/yGzrvaAdN6ANoCEdAp9K+PmxMWXV9lChoBkdAmwaJnHvMKWgHTegDaAhHQKfTOKekHlh1fZQoaAZHQJxYHKnvUjNoB03oA2gIR0Cn07hKtga4dX2UKGgGR0CajqE7nxJ/aAdN6ANoCEdAp98bLW7OFHV9lChoBkdAlsWtIPK+z2gHTegDaAhHQKffUbe/Ho51fZQoaAZHQJlT4x33YcxoB03oA2gIR0Cn38LofSx8dX2UKGgGR0CbatZwGW2PaAdN6ANoCEdAp+A/aSLZSXV9lChoBkdAm8B29+PRzGgHTegDaAhHQKfroFW4mTl1fZQoaAZHQJsklKFqSHNoB03oA2gIR0Cn69T5XU6QdX2UKGgGR0Cbn4QiiZfEaAdN6ANoCEdAp+xH9tMwlHV9lChoBkdAmGIY4dZJTWgHTegDaAhHQKfszrKvFFV1fZQoaAZHQJyddNTLns9oB03oA2gIR0Cn+CyRB/qgdX2UKGgGR0CZRrcVxjriaAdN6ANoCEdAp/hingpBonV9lChoBkdAnEI1sk6cRWgHTegDaAhHQKf42Pd2xIJ1fZQoaAZHQJr/QE2YOUdoB03oA2gIR0Cn+V8R15jZdX2UKGgGR0CdpVEWIoE0aAdN6ANoCEdAqARuLLpzLnV9lChoBkdAnoDphz/6wmgHTegDaAhHQKgEpSa3I+51fZQoaAZHQJ8KX7j1f3NoB03oA2gIR0CoBRqXnhbXdX2UKGgGR0CcKeZUkv9MaAdN6ANoCEdAqAWe3lS0jXV9lChoBkdAmEbaBy0a62gHTegDaAhHQKgQxsEaESN1fZQoaAZHQJm+qVxCIDZoB03oA2gIR0CoEPrV4HHFdX2UKGgGR0Cb7SxFy7wsaAdN6ANoCEdAqBF1xffGdnV9lChoBkdAlcObhm5DqmgHTegDaAhHQKgR8lolD4R1fZQoaAZHQJlmj7DVH4JoB03oA2gIR0CoHRH752yLdX2UKGgGR0Cb5mfoA4n4aAdN6ANoCEdAqB1H1UVBU3V9lChoBkdAm33LnTy8SWgHTegDaAhHQKgdwAz544Z1fZQoaAZHQJcXCAJ9iMJoB03oA2gIR0CoHj8PWhAXdX2UKGgGR0CZQYbmU4aQaAdN6ANoCEdAqCllmHxjKHV9lChoBkdAm78sqFyq/GgHTegDaAhHQKgpmvwmVqx1fZQoaAZHQJvTRdcB2fVoB03oA2gIR0CoKg3lr/KhdX2UKGgGR0CYxXQcxTKlaAdN6ANoCEdAqCqJs9B8hXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ec625cd812e4a60671895c2cc9cc59f3175aceb923d8ba00897b942b6a50363
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347288a2b81f5431c93843451c0b4b0960191d5507657532b184231e359cc473
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd5b943430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd5b9434c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd5b943550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd5b9435e0>", "_build": "<function ActorCriticPolicy._build at 0x7fcd5b943670>", "forward": "<function ActorCriticPolicy.forward at 0x7fcd5b943700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcd5b943790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd5b943820>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcd5b9438b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd5b943940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd5b9439d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd5b943a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcd5b93ccc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674203988362803291, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGmJPz840K2/7FDTv/KSAL/QXVC/W9WCP/1z/b/CJ0i/idHGvj1KID9IPAo/49glvj/Ioj8DtSi9PFDnPvvdd793dKi//mm4PPV3bb/b0Zm/WBGHPwfN8byXIJO/bzl5wM6WIz9pmZ4+sF0mPzU/Y7+VRMs/adaUv+zIbr+U/ok/QzPhv7E35T9MTq2/p7KrvxzndT8mdNQ/gUYWP3TrbL/Rc6I/pB6ivEyNjT7zWZ0/haWov9gRBz1+plK/xTL0Pp9yhz9Shyg+o3Kpv9JRgj3OliM/aZmePrBdJj81P2O/gWQRv7YDvT6Y6y4/ylLWPXQHcj5OqRm+jdWxPb4DgD5ugse+A/3Tv/erj7783Qw/HX4fPx1GLb9wnqk9hfxrP7M7lD+gdgFALzg9P2IPzL6oDiQ9VuMZv6hYQT41oOI+zpYjP2mZnj6e9sS/ETKQP54PZL4K2mC8ImQAP8/CBD9usjG//81ewPTMxj4LGa4+AY8kvbW4EsBSs/696uqdvoOvlzynt9W/RGyIviduRD+LYmg/FxPvP46lhD6quc4/zFWSPqGaRr8Umem+5VgaQIdOyL9pmZ4+nvbEvzU/Y7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACc6Yk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANp+jvQAAAAAflPu/AAAAAMw3Sz0AAAAA4STmPwAAAAD7Aji8AAAAAEsr+D8AAAAA3WRmvQAAAAAkg/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxridtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBsjBb4AAAAA4kn7vwAAAACOf8i9AAAAADX8/D8AAAAAsWIJvgAAAAAHKuA/AAAAAGLYzT0AAAAAvpv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgcX7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAJVPM9AAAAAEfw478AAAAAjs80vQAAAAAl79o/AAAAAFcLnL0AAAAAXKDaPwAAAACBucW9AAAAAGap/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABu2My1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9jUFvgAAAAD9Nf+/AAAAALMvnr0AAAAAEE3ePwAAAABePOU7AAAAAFSB+D8AAAAAw5kEPgAAAAAUxe2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKA8MOrhisqMAWyUTegDjAF0lEdApv91Ey+HrXV9lChoBkdAoFzbKs+3Y2gHTegDaAhHQKb/qGL1mJ51fZQoaAZHQKCriIIF/x5oB03oA2gIR0CnABwiaAnVdX2UKGgGR0CfRR0NSZSfaAdN6ANoCEdApwCvQOWjXXV9lChoBkdAnc2YZAIIGGgHTegDaAhHQKcL2q2jO9p1fZQoaAZHQKBr+R/3FkxoB03oA2gIR0CnDA6O5rgwdX2UKGgGR0CdKvKJl8PXaAdN6ANoCEdApwyGchC+lHV9lChoBkdAnhNRYaHbh2gHTegDaAhHQKcNBn7pFCt1fZQoaAZHQJ3Q27e2uxNoB03oA2gIR0CnGGdkSVW0dX2UKGgGR0Cdt6KVpsXSaAdN6ANoCEdApxiimhufmXV9lChoBkdAoBjYChew92gHTegDaAhHQKcZHCIk7fZ1fZQoaAZHQJ532IoE0SBoB03oA2gIR0CnGZ6bnX/YdX2UKGgGR0CenP/Yao/BaAdN6ANoCEdApyUOl0o0AXV9lChoBkdAoD8srK/202gHTegDaAhHQKclRRUm2LJ1fZQoaAZHQJrs8srd30RoB03oA2gIR0CnJbljVhCudX2UKGgGR0CbRKgow22oaAdN6ANoCEdApyY35aePJnV9lChoBkdAma4HIhhYvGgHTegDaAhHQKcxiH+qBEt1fZQoaAZHQJjZ3XlKbrloB03oA2gIR0CnMb7p/wy7dX2UKGgGR0CbHQT3qRlpaAdN6ANoCEdApzIydnTRY3V9lChoBkdAmuU/AO8TSWgHTegDaAhHQKcytU2kzoF1fZQoaAZHQJwDpb5dnkFoB03oA2gIR0CnPd5f2K2sdX2UKGgGR0CZpySyt3fRaAdN6ANoCEdApz4S2fChvnV9lChoBkdAmtDUxdpqRGgHTegDaAhHQKc+i/D+BH11fZQoaAZHQJxTrua4MF5oB03oA2gIR0CnPw3yAhB7dX2UKGgGR0Cb4KM0P6KtaAdN6ANoCEdAp0pT8iwB53V9lChoBkdAm1MWFrVOK2gHTegDaAhHQKdKhxlQMx51fZQoaAZHQJkbJfF72L5oB03oA2gIR0CnSvuYx+KCdX2UKGgGR0CbA5WDpTuOaAdN6ANoCEdAp0t8i+tbLXV9lChoBkdAmV/o7A+IM2gHTegDaAhHQKdWnRfF72N1fZQoaAZHQJuE3NorWiFoB03oA2gIR0CnVtPHT7VKdX2UKGgGR0Cbimzdk8RuaAdN6ANoCEdAp1dF/Ue+23V9lChoBkdAmtpZxWDHwWgHTegDaAhHQKdXwg9Net11fZQoaAZHQJ0SUUXYUWVoB03oA2gIR0CnYt3EIgNgdX2UKGgGR0CbSYlgtvn9aAdN6ANoCEdAp2MTq4YrKHV9lChoBkdAmgHuIInjQ2gHTegDaAhHQKdji+qzZ6F1fZQoaAZHQJXbivaDf3xoB03oA2gIR0CnZBKSgXdkdX2UKGgGR0CcHvPk7wKCaAdN6ANoCEdAp29UNz8xbnV9lChoBkdAmpxDqrzXjGgHTegDaAhHQKdvi2/i5ut1fZQoaAZHQJrkih24d6toB03oA2gIR0CncAaNdZ7pdX2UKGgGR0CdZz3225QQaAdN6ANoCEdAp3CU9IPK+3V9lChoBkdAmgdc32mHg2gHTegDaAhHQKd74ZMtbs51fZQoaAZHQJp6bFsHjZNoB03oA2gIR0CnfBcFINExdX2UKGgGR0CdWesYl6Z6aAdN6ANoCEdAp3yJzHS4OXV9lChoBkdAm/VOHerMkmgHTegDaAhHQKd9Dqs2ehB1fZQoaAZHQJ5pOoESuhdoB03oA2gIR0CniBZFG5MDdX2UKGgGR0Cb9hCiRGMGaAdN6ANoCEdAp4hJ2t+1B3V9lChoBkdAna9fFBIFvGgHTegDaAhHQKeIviVB2Oh1fZQoaAZHQJyMyiGnGbVoB03oA2gIR0CniUDcEeQudX2UKGgGR0CbOugogFHKaAdN6ANoCEdAp5RhjjJdSnV9lChoBkdAmqZ5BgNPQGgHTegDaAhHQKeUmHObAk91fZQoaAZHQJlhbjuKGcpoB03oA2gIR0CnlRAvtdAxdX2UKGgGR0CWj/3ueBhAaAdN6ANoCEdAp5WQkZ75VXV9lChoBkdAnBnxQWN3n2gHTegDaAhHQKeg1ucc2it1fZQoaAZHQJvmQp6QeV9oB03oA2gIR0CnoQyl3yI6dX2UKGgGR0CcXKI5YHPeaAdN6ANoCEdAp6GBnWattHV9lChoBkdAm4XcwDeTFGgHTegDaAhHQKeiB/GVAzJ1fZQoaAZHQJ40b4SHuZ1oB03oA2gIR0CnrRdph4MXdX2UKGgGR0CZzNtCiRGMaAdN6ANoCEdAp61R2dNFjXV9lChoBkdAll2pXp4bCWgHTegDaAhHQKetyRZEDyR1fZQoaAZHQJeRhhgE2YRoB03oA2gIR0CnrkljVhCudX2UKGgGR0CZnmrp7kXDaAdN6ANoCEdAp7mXNA1NxnV9lChoBkdAlNY4D9wWFmgHTegDaAhHQKe5zj6N2kl1fZQoaAZHQJkZxwl0HQhoB03oA2gIR0CnukRf4REndX2UKGgGR0CNh9KOktVaaAdN6ANoCEdAp7rDilzltHV9lChoBkdAmF+1+AmReWgHTegDaAhHQKfF/++dsi11fZQoaAZHQJd3qwNb1RNoB03oA2gIR0CnxjQbuMMrdX2UKGgGR0Caq3gQYk3TaAdN6ANoCEdAp8anNs3yZ3V9lChoBkdAmYkKn3ta6mgHTegDaAhHQKfHK078vVV1fZQoaAZHQJsTaoOx0MhoB03oA2gIR0Cn0obbDdgwdX2UKGgGR0CYva/yGzrvaAdN6ANoCEdAp9K+PmxMWXV9lChoBkdAmwaJnHvMKWgHTegDaAhHQKfTOKekHlh1fZQoaAZHQJxYHKnvUjNoB03oA2gIR0Cn07hKtga4dX2UKGgGR0CajqE7nxJ/aAdN6ANoCEdAp98bLW7OFHV9lChoBkdAlsWtIPK+z2gHTegDaAhHQKffUbe/Ho51fZQoaAZHQJlT4x33YcxoB03oA2gIR0Cn38LofSx8dX2UKGgGR0CbatZwGW2PaAdN6ANoCEdAp+A/aSLZSXV9lChoBkdAm8B29+PRzGgHTegDaAhHQKfroFW4mTl1fZQoaAZHQJsklKFqSHNoB03oA2gIR0Cn69T5XU6QdX2UKGgGR0Cbn4QiiZfEaAdN6ANoCEdAp+xH9tMwlHV9lChoBkdAmGIY4dZJTWgHTegDaAhHQKfszrKvFFV1fZQoaAZHQJyddNTLns9oB03oA2gIR0Cn+CyRB/qgdX2UKGgGR0CZRrcVxjriaAdN6ANoCEdAp/hingpBonV9lChoBkdAnEI1sk6cRWgHTegDaAhHQKf42Pd2xIJ1fZQoaAZHQJr/QE2YOUdoB03oA2gIR0Cn+V8R15jZdX2UKGgGR0CdpVEWIoE0aAdN6ANoCEdAqARuLLpzLnV9lChoBkdAnoDphz/6wmgHTegDaAhHQKgEpSa3I+51fZQoaAZHQJ8KX7j1f3NoB03oA2gIR0CoBRqXnhbXdX2UKGgGR0CcKeZUkv9MaAdN6ANoCEdAqAWe3lS0jXV9lChoBkdAmEbaBy0a62gHTegDaAhHQKgQxsEaESN1fZQoaAZHQJm+qVxCIDZoB03oA2gIR0CoEPrV4HHFdX2UKGgGR0Cb7SxFy7wsaAdN6ANoCEdAqBF1xffGdnV9lChoBkdAlcObhm5DqmgHTegDaAhHQKgR8lolD4R1fZQoaAZHQJlmj7DVH4JoB03oA2gIR0CoHRH752yLdX2UKGgGR0Cb5mfoA4n4aAdN6ANoCEdAqB1H1UVBU3V9lChoBkdAm33LnTy8SWgHTegDaAhHQKgdwAz544Z1fZQoaAZHQJcXCAJ9iMJoB03oA2gIR0CoHj8PWhAXdX2UKGgGR0CZQYbmU4aQaAdN6ANoCEdAqCllmHxjKHV9lChoBkdAm78sqFyq/GgHTegDaAhHQKgpmvwmVqx1fZQoaAZHQJvTRdcB2fVoB03oA2gIR0CoKg3lr/KhdX2UKGgGR0CYxXQcxTKlaAdN6ANoCEdAqCqJs9B8hXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7ec11791f876d1f0382c211f3fee63d49aac7f6311382c04f1dbb2a302c0993
|
3 |
+
size 1215629
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1873.4118835928195, "std_reward": 125.19125583126856, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T09:38:50.761150"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ea903eae004b138f9c02b2d090fa2ba9c569455392894ad600256f00105ca1a
|
3 |
+
size 2521
|