ppo-LunarLander-v2 / config.json
dcfidalgo's picture
Upload PPO LunarLander-v2 trained agent
47230f5
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b561a758550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b561a7585e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b561a758670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b561a758700>", "_build": "<function ActorCriticPolicy._build at 0x7b561a758790>", "forward": "<function ActorCriticPolicy.forward at 0x7b561a758820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b561a7588b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b561a758940>", "_predict": "<function ActorCriticPolicy._predict at 0x7b561a7589d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b561a758a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b561a758af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b561a758b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b561a6ede80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698690761865925538, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAHrPDj6FTuG777YKO+Ufzbj7njW90mAzugAAgD8AAIA/APp7PVwmPbx1v7m9vIBQPZ61oD1mYQ08AACAPwAAgD8A7gM84WiguuscZjNmJYMudyMsOovow7MAAIA/AACAP5OVRb4Zgo8/D10Bv0kiL78IwcW+3Y1ovgAAAAAAAAAATZ8sPVwraLqAwqU6Uc0INTCq77k9y8C5AACAPwAAAAAa0249e5qiugaP9LpE6Emz6rj3uZE6DDoAAIA/AAAAAGZtor1rIxM/ggKMvG6+PL+amia+WbS3ugAAAAAAAAAAFoqbvqz0HT+KyCk+aUg8v1x9575ySmc+AAAAAAAAAABNNAS9AzQzPSZQSz7KRZi+7LanPSd1AD4AAAAAAAAAAOaIED2PZj26brO9uwbRSTkSaiE5gleeuAAAgD8AAIA/M7lZPVynQ7qauI65T5wutNztBzsm2Kc4AACAPwAAAAAzm9q7w51buupHQbOX6pUv/zTlOgtGwDMAAIA/AACAP83rpT1IA4q6OfglvA3zNrZCczW6PXimNQAAgD8AAAAAoBtuPlzplD8L9+g+H7cQv+Gp9D6CgGY+AAAAAAAAAABNwFo9uG7FuYBwtzPa2+Ku/ezoO4twyLMAAIA/AACAP2aukjvDsXe61rDLOuk37zVlMIG662/suQAAgD8AAIA/ZkCNPCm4UrqeyJS7VRiStkbKQroQ8wQ2AAAAAAAAAADz3fS9ThbCPWolwD6R5a++Xg6mPiLNxT0AAAAAAAAAAM2zqjyPZkC6mGJVM7Iqla/fOsI6lNvDswAAgD8AAIA/jeImPs99hT6mMhC/niIAv+MNhb5+Qma+AAAAAAAAAAAzc7m8bZEcPkKVKj6Upua+xBPcvFqCxz0AAAAAAAAAAHPVxz2xrhQ+AjxbvmBH0L6euQA84BLlvQAAAAAAAAAAmmURvIX76LssdI06lUq1PPd+MT2F45a9AACAPwAAgD/N6RQ9w6lVupIskToDaiI2fI1mO/LNprkAAAAAAAAAALPiPD1If6e67RMKPVvhhzMOpIo6mSlJswAAgD8AAIA/TfKdPelCsz+b8hU/Xrk9vh8s8DyywYg+AAAAAAAAAABAFQI+L76GPyXA3T7FlCm/G6iNPohaij4AAAAAAAAAAO18kb4EGig/wNXnvYwgNr+78xO/Ml/bPQAAAAAAAAAAM/VYPRoxNT/VsrS8QWBOv5bfxj0ujjq9AAAAAAAAAAAA3mq9ewqHuqMijbvee384Kubiuq4cJjkAAAAAAAAAAM3SuTwkvFU855MovqJdm74O4w++gtkAvQAAgD8AAAAAAAScu/b0OLorF2s6IP4cuZjbKDqH0IK5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLBJVfeDWeMAWyUS7OMAXSUR0C3ismM4tHydX2UKGgGR0BwdP1QIldDaAdLsGgIR0C3it6suFpPdX2UKGgGR0Bw1EdxQzk7aAdLwWgIR0C3iuXZCfHxdX2UKGgGR0Bzacyad+XraAdLvWgIR0C3iucVxjridX2UKGgGR0BwP+CkGiYcaAdLsGgIR0C3ivaoESuhdX2UKGgGR0B0HLDQ7cO9aAdLtWgIR0C3ivmEXcgydX2UKGgGR0BvDh+MIeHSaAdLxGgIR0C3iv+MhougdX2UKGgGR0B0E5h2GIsRaAdLp2gIR0C3iwXv+fh/dX2UKGgGR0BxATwH7gsLaAdLqmgIR0C3izuogmqpdX2UKGgGR0Bwm8L3K0UoaAdLu2gIR0C3i0DA8B+4dX2UKGgGR0BwiM2XLNfPaAdLjWgIR0C3i1aCUX54dX2UKGgGR0Bxr3YVZcLSaAdLtGgIR0C3i2CX+l0pdX2UKGgGR0ByfMsFt8/maAdLvWgIR0C3i2HEqDsddX2UKGgGR0ByWt0OmR/3aAdLvWgIR0C3i6RoIv8JdX2UKGgGR0By8HB7/n4gaAdLw2gIR0C3i7yYb83udX2UKGgGR0BxiI7LdN34aAdLo2gIR0C3i9KqOtGNdX2UKGgGR0BxridkJ8fFaAdLsmgIR0C3i+L52yLRdX2UKGgGR0BydEbgjyFxaAdLyGgIR0C3i+z5GjKxdX2UKGgGR0ByJfc1wYLtaAdLtWgIR0C3i/2Zy+6AdX2UKGgGR0By2WXjU/fPaAdLvGgIR0C3jCCdWhh6dX2UKGgGR0BxwV8uzyBkaAdLuWgIR0C3jCdoFmnPdX2UKGgGR0Byi5fkWAPNaAdLwGgIR0C3jCeqrBCVdX2UKGgGR0BxhKFBY3efaAdLrmgIR0C3jDSo86mwdX2UKGgGR0Byb9Id2gWaaAdLvWgIR0C3jFriuMdcdX2UKGgGR0BwGZ4W1twaaAdLr2gIR0C3jGRoysS1dX2UKGgGR0B0AEbEP1+RaAdLsWgIR0C3jKUS/TLGdX2UKGgGR0BzUPR8c+7laAdLq2gIR0C3jLxZZB9kdX2UKGgGR0Bya/Tb349HaAdLt2gIR0C3jNnlwLmZdX2UKGgGR0Bzb5ASnLq2aAdLw2gIR0C3jON/OMVDdX2UKGgGR0BzAA8W9DhMaAdLsWgIR0C3jPdBKL88dX2UKGgGR0BxtIIOYplSaAdL2mgIR0C3jQAGwA2idX2UKGgGR0BzMySxJNCaaAdLt2gIR0C3jQfvfCQ+dX2UKGgGR0By2s2R7qptaAdLwWgIR0C3jRHZ00WNdX2UKGgGR0Bx1EEZBLPEaAdLzmgIR0C3jRHT/hl2dX2UKGgGR0ByU4BJZntfaAdLtmgIR0C3jRlOoHcDdX2UKGgGR0BubTtVrAP/aAdLomgIR0C3jUHXiBGydX2UKGgGR0Bzux3ljmSyaAdL0WgIR0C3jYAzLwF1dX2UKGgGR0BzMQSvkiljaAdLrWgIR0C3jZy9qUNbdX2UKGgGR0BzmteE7GNraAdLumgIR0C3jb8kUsWgdX2UKGgGR0ByAY/1QIldaAdLuWgIR0C3jczrZ8KHdX2UKGgGR0By0FwbVBldaAdL1mgIR0C3jfaqn3tbdX2UKGgGR0BxUCMsH0K7aAdLnGgIR0C3jgDSLIgedX2UKGgGR0Bx3t2zOX3QaAdLr2gIR0C3jiWFvhqCdX2UKGgGR0BzeOu6mO2iaAdLt2gIR0C3jiPy08eTdX2UKGgGR0Bw+XUgB91EaAdLnGgIR0C3jl6HO8kEdX2UKGgGR0BxiHFCLMs6aAdLoWgIR0C3jmJ4jbBXdX2UKGgGR0ByJJ81Gb1AaAdLtWgIR0C3jmhiLEUCdX2UKGgGR0ByWhJf6XSjaAdLrGgIR0C3jo1NxlxwdX2UKGgGR0BymySq2jO+aAdLwmgIR0C3jrbORkmQdX2UKGgGR0Bz44WxhUiqaAdLsWgIR0C3jt+3H7xedX2UKGgGR0BxV8c3l0YCaAdLxGgIR0C3juWRigCfdX2UKGgGR0BzmjiKiwjdaAdLx2gIR0C3jz4LofSydX2UKGgGR0Bys84MnZ00aAdLtGgIR0C3j0Heaa1DdX2UKGgGR0BxLJRwZOzqaAdLomgIR0C3j3GovSMMdX2UKGgGR0ByD5xYJVsDaAdLtGgIR0C3j4sg+yJLdX2UKGgGR0Bx8zyy2QXAaAdLsGgIR0C3j5hQaaTfdX2UKGgGR0BykXAEdNnHaAdLuGgIR0C3j7Dh5xBFdX2UKGgGR0BzqBiDujREaAdLr2gIR0C3j7ASWZ7YdX2UKGgGR0By07tMPBi1aAdLtmgIR0C3j/attALRdX2UKGgGR0B0UNLteD3/aAdLx2gIR0C3kAXLFGXpdX2UKGgGR0BybxpUPxx2aAdLsWgIR0C3kCfqC6H1dX2UKGgGR0Bw6UZ88cMmaAdLq2gIR0C3kC3LvCuVdX2UKGgGR0ByKBedCmdiaAdNKwFoCEdAt5BIXIlt0nV9lChoBkdAcJ7F5fMOgGgHS5poCEdAt5BaZPVNH3V9lChoBkdAcaut6HCXQmgHS5ZoCEdAt5ByD5CWvHV9lChoBkdAcQDNlAeJYWgHS69oCEdAt5BxVyWAw3V9lChoBkdAcCUq+JxecGgHS6ZoCEdAt5B82OyVwHV9lChoBkdAchZE/SpiqmgHS8toCEdAt5DUqI7/43V9lChoBkdAcXiJZW7vomgHS6doCEdAt5D/kJa7mXV9lChoBkdAcR+M8ox59mgHS65oCEdAt5Eidf9gnnV9lChoBkdAcNO84gieNGgHS5poCEdAt5Ep3Roh6nV9lChoBkdAScq77Kq4pmgHS3poCEdAt5E4vtdAxHV9lChoBkdAck77cwg1WWgHTcICaAhHQLeRdRUm2LJ1fZQoaAZHQHKghU70WdpoB0vEaAhHQLeRqzabnYB1fZQoaAZHQHNDe2JBPbhoB0vNaAhHQLeRqT238XN1fZQoaAZHQHGdc8YAKfFoB0u3aAhHQLeRv+pfhMt1fZQoaAZHQHBiytA9mpVoB0unaAhHQLeR2F7Uoa11fZQoaAZHQHC/4xgy/K1oB0uiaAhHQLeSCcX3xnZ1fZQoaAZHQHIhhxYJVsFoB0ufaAhHQLeSEapPykN1fZQoaAZHQHK5syBTXJ5oB0vZaAhHQLeSKZjQRf51fZQoaAZHQHGk6LjxTbZoB0uUaAhHQLeSZpG4I8h1fZQoaAZHQHKMEFbFCLNoB0vDaAhHQLeSZdp7Czl1fZQoaAZHQG7DTTWoWHloB0vEaAhHQLeSg93r2QJ1fZQoaAZHQHB2Pc8DB/JoB0uqaAhHQLeSkggX/HZ1fZQoaAZHQHNAjguRLbpoB0u1aAhHQLeSlxgy/K11fZQoaAZHQHIWQ7YChexoB0u6aAhHQLeSmoF3Y+V1fZQoaAZHQGaqDHfdhy9oB03oA2gIR0C3kqaY/mkndX2UKGgGR0ByshEBsANoaAdLpGgIR0C3kqSH6/IsdX2UKGgGR0BzKM593KSxaAdLpWgIR0C3krmnXNC7dX2UKGgGR0BxhEYAKfFraAdLsmgIR0C3kt4AGSpzdX2UKGgGR0Bu3vJvHcUNaAdLqWgIR0C3kwxb4agmdX2UKGgGR0BwrJiay8jBaAdL02gIR0C3kw/XwsoVdX2UKGgGR0Byjld+ocaPaAdLzmgIR0C3kzp1RtP6dX2UKGgGR0ByCY+bExZdaAdLq2gIR0C3k1WTX8O1dX2UKGgGR0Bz37Dk2gnMaAdLuGgIR0C3k1WweNkwdX2UKGgGR0ByRXLDAJswaAdLvmgIR0C3k399H+ZPdX2UKGgGR0B0Uyw7kn1GaAdLsmgIR0C3k7qmwaBJdX2UKGgGR0BxXhQpF1B/aAdLpGgIR0C3k8IZVGTcdX2UKGgGR0Bx/WcZtNzsaAdLvGgIR0C3k9kRzzVddX2UKGgGR0BzF/CiyprDaAdLwmgIR0C3lAa24NI9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 928, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}