first_commit_ppo
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -231.74 +/- 50.99
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21189d00d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21189d0160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21189d01f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21189d0280>", "_build": "<function ActorCriticPolicy._build at 0x7f21189d0310>", "forward": "<function ActorCriticPolicy.forward at 0x7f21189d03a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21189d0430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21189d04c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21189d0550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21189d05e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21189d0670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21189d0700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21189cb720>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675161105824147021, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABPZjz6PjJE/Oge4PgEa6r6KoNQ++zujPQAAAAAAAAAALfoBvhiRZj8wz7y+KdxIv14KEjym65+9AAAAAAAAAACtjlK+ykgPP4zCNr6ShH6/9cFavvaoLrwAAAAAAAAAAJpxU7yb82w/3Zb/vZ5sMb8bxQY+uk0LPgAAAAAAAAAAzQ4cPfiutT/r//A9SjyKvagaj7xrw1U9AAAAAAAAAACGiFQ+W+Z6P6LkIT9cPUm/ZiksPQAMGT0AAAAAAAAAAM1wM70GmKc/U3GEvukzyL5LBhY+DbVTPgAAAAAAAAAAE/MkvxP6Yb7A1ru8Ap80OkRLA77T4nG8AACAPwAAgD+D0tE+3EyPvVhD9jvGv9W9ZgnmPOiN1rsAAAAAAAAAAHpvtr5OHmU/jg4uv6GrMb8f/Im9Uag+vgAAAAAAAAAAmNUxv+NLUr7bHIe9FoWJu3mL3D0qW869AAAAAAAAAACAw1o+4EZePzyrIT+D5Te/8ExCvqphRr0AAAAAAAAAAEBo3j2dajo/Dkg1PkH4Qr8IHH49rVdcPgAAAAAAAAAAgBF/PUx3qT+Nvdk+3KrMvjNaBL0IN3S8AAAAAAAAAACaYem80PoyP0IdyL00qVC/DcRwPXCawjwAAAAAAAAAACaLFj5g09Q+XIwqPoY5R7/g0xY+fQdxPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP8iyYOKfRcCUhpRSlIwBbJRLZIwBdJRHQGDMP6sQumJ1fZQoaAZoCWgPQwgRVI1eDdQ8wJSGlFKUaBVLXWgWR0BgzAUlAu7IdX2UKGgGaAloD0MIg2xZvi4ZScCUhpRSlGgVS4BoFkdAYMy0k4WDYnV9lChoBmgJaA9DCH0iT5KuO1zAlIaUUpRoFUt2aBZHQGDNhoEjgQ91fZQoaAZoCWgPQwijyjDuBu9FwJSGlFKUaBVLemgWR0Bgz+xyGSIQdX2UKGgGaAloD0MIJLiRskUtXsCUhpRSlGgVS3doFkdAYNDOsT37DXV9lChoBmgJaA9DCGcqxCPx8iJAlIaUUpRoFUtnaBZHQGDRdwm3OOd1fZQoaAZoCWgPQwheMLjmjgJLwJSGlFKUaBVLTmgWR0Bg0yvmozeodX2UKGgGaAloD0MIVYhH4uWoUcCUhpRSlGgVS2BoFkdAYNNabF0gbXV9lChoBmgJaA9DCJOLMbCOyyVAlIaUUpRoFUttaBZHQGDUcqFyq+91fZQoaAZoCWgPQwiPxMvTuT5CwJSGlFKUaBVLYWgWR0Bg1OSEDhcadX2UKGgGaAloD0MIiSMPRJZ6bMCUhpRSlGgVS3ZoFkdAYNXPyCnP3XV9lChoBmgJaA9DCPMeZ5qw4T3AlIaUUpRoFUtaaBZHQGDWElu3trt1fZQoaAZoCWgPQwh9BWnGovE7wJSGlFKUaBVLVGgWR0Bg1/KKYRdydX2UKGgGaAloD0MIumddo+UNbcCUhpRSlGgVS79oFkdAYNhvkRzzVnV9lChoBmgJaA9DCHVat0Htp0PAlIaUUpRoFUtpaBZHQGDem4I8hcJ1fZQoaAZoCWgPQwivtfepKqpewJSGlFKUaBVLoGgWR0Bg39LBbfP5dX2UKGgGaAloD0MIoMTnTrAvS8CUhpRSlGgVS1VoFkdAYOCq1gH/tXV9lChoBmgJaA9DCLZpbK8FrUvAlIaUUpRoFUuUaBZHQGDhQmNR3vB1fZQoaAZoCWgPQwg1Cd6QRk1KwJSGlFKUaBVLX2gWR0Bg4bS/j81odX2UKGgGaAloD0MIwD3PnzawVsCUhpRSlGgVS3ZoFkdAYOF6QeV9nnV9lChoBmgJaA9DCAu1pnnHOmfAlIaUUpRoFUtpaBZHQGDh6CUX5311fZQoaAZoCWgPQwjm6PF7m/JXwJSGlFKUaBVLmGgWR0Bg4bF4s3AEdX2UKGgGaAloD0MIC89LxUaUZcCUhpRSlGgVS3NoFkdAYOGrK/20zHV9lChoBmgJaA9DCAKBzqRN+0bAlIaUUpRoFUugaBZHQGDjgB91EE11fZQoaAZoCWgPQwgZPEz75nZNwJSGlFKUaBVLYGgWR0Bg46ZtvXK9dX2UKGgGaAloD0MIu9Vz0vuqRcCUhpRSlGgVS4RoFkdAYOiudwvQGHV9lChoBmgJaA9DCHo4gem0FkXAlIaUUpRoFUt6aBZHQGDpv4VRDTl1fZQoaAZoCWgPQwiDwwsiUm85wJSGlFKUaBVLT2gWR0Bg68EidJ8OdX2UKGgGaAloD0MImDJwQEtvI0CUhpRSlGgVS6loFkdAYOu2ETQE6nV9lChoBmgJaA9DCHOiXYWUQUPAlIaUUpRoFUteaBZHQGDszLW7OFB1fZQoaAZoCWgPQwiHb2HdeLf1P5SGlFKUaBVLa2gWR0Bg8PPX05EMdX2UKGgGaAloD0MIE/BrJAnC7z+UhpRSlGgVS2ZoFkdAYPFepn6EanV9lChoBmgJaA9DCFhyFYvfnVXAlIaUUpRoFUtcaBZHQGDxjhcZ9/l1fZQoaAZoCWgPQwhyGqIKf+JMwJSGlFKUaBVLWWgWR0Bg8V0FKTStdX2UKGgGaAloD0MInuqQm+FIS8CUhpRSlGgVS3ZoFkdAYPNQP7N0NnV9lChoBmgJaA9DCDUnLzIBflnAlIaUUpRoFUt2aBZHQGDzyB06o2p1fZQoaAZoCWgPQwi1+1WA7xo4wJSGlFKUaBVLdmgWR0Bg88FY+0PZdX2UKGgGaAloD0MICTauf9f0WcCUhpRSlGgVS4FoFkdAYPWY2sJY1nV9lChoBmgJaA9DCNUhN8MN0DbAlIaUUpRoFUuFaBZHQGD2GA08/2V1fZQoaAZoCWgPQwi9/E6TGbdDwJSGlFKUaBVLYGgWR0Bg+QUi6g/UdX2UKGgGaAloD0MI/kP67esYTcCUhpRSlGgVS1doFkdAYPrPeHi3onV9lChoBmgJaA9DCKVlpN5TTUzAlIaUUpRoFUt5aBZHQGD/Yt6HCXR1fZQoaAZoCWgPQwgx7gbRWn1LwJSGlFKUaBVLS2gWR0BhAFHxz7uVdX2UKGgGaAloD0MIe2tgqwT/ScCUhpRSlGgVS4VoFkdAYQGefZmI03V9lChoBmgJaA9DCAvvchHf1ljAlIaUUpRoFUtYaBZHQGECwkX1rZd1fZQoaAZoCWgPQwh3Mc10rzJUwJSGlFKUaBVLUGgWR0BhA2SB9TgmdX2UKGgGaAloD0MIcv27PnNaU8CUhpRSlGgVS2NoFkdAYQRisGPgenV9lChoBmgJaA9DCKQczCbAqE/AlIaUUpRoFUt2aBZHQGEFm6f8Mux1fZQoaAZoCWgPQwhXBP9byQBIwJSGlFKUaBVLfWgWR0BhB6X4TK1YdX2UKGgGaAloD0MI7KaU18plYsCUhpRSlGgVS4BoFkdAYQgMXJo0ynV9lChoBmgJaA9DCBcMrrmjKULAlIaUUpRoFUtYaBZHQGEJW/zreIl1fZQoaAZoCWgPQwgMj/0sliJMwJSGlFKUaBVLb2gWR0BhCk61b7j1dX2UKGgGaAloD0MIls0cklo4P8CUhpRSlGgVS1loFkdAYQungHeJpHV9lChoBmgJaA9DCDzdeeI5SVHAlIaUUpRoFUufaBZHQGEN/hl18st1fZQoaAZoCWgPQwiZDwh0JnUswJSGlFKUaBVLVWgWR0BhEqqn3ta7dX2UKGgGaAloD0MIZqTeUzkZTcCUhpRSlGgVS1xoFkdAYRK8Yht+C3V9lChoBmgJaA9DCHpRu18FVkzAlIaUUpRoFUtzaBZHQGEWT5wfhdd1fZQoaAZoCWgPQwh9CRUcXgRDwJSGlFKUaBVLYGgWR0BhHLlaKUFCdX2UKGgGaAloD0MI+YIWEjAlYsCUhpRSlGgVS4RoFkdAYR2tVaOghHV9lChoBmgJaA9DCGdfeZCe21vAlIaUUpRoFUuAaBZHQGEenxz7uUl1fZQoaAZoCWgPQwgWTPxR1DFIwJSGlFKUaBVLhGgWR0BhHm+K0lZ6dX2UKGgGaAloD0MIy4CzlCwLOMCUhpRSlGgVS4toFkdAYSI47Rv3rXV9lChoBmgJaA9DCAZINIEiUVDAlIaUUpRoFUtPaBZHQGEjhz/6wdN1fZQoaAZoCWgPQwggKLfte4A9wJSGlFKUaBVLgWgWR0BhJbTYukDZdX2UKGgGaAloD0MI1vz4S4s+acCUhpRSlGgVS5FoFkdAYSYzTnaFmHV9lChoBmgJaA9DCAa4IFuWy1fAlIaUUpRoFUt5aBZHQGEoRyfcvdx1fZQoaAZoCWgPQwh3FVJ+UjUuwJSGlFKUaBVLT2gWR0BhKCGgzxgBdX2UKGgGaAloD0MItkqwOJzyUMCUhpRSlGgVS2RoFkdAYSjgOz6acHV9lChoBmgJaA9DCBB6Nqs+YzjAlIaUUpRoFUugaBZHQGEqN5dGAkN1fZQoaAZoCWgPQwi/0vnwLBdGwJSGlFKUaBVLkWgWR0BhKwHE/B3zdX2UKGgGaAloD0MIXJGYoIZXUsCUhpRSlGgVS0JoFkdAYSws5GSZB3V9lChoBmgJaA9DCKG7JM6KF1DAlIaUUpRoFUtNaBZHQGEwWQwK0D51fZQoaAZoCWgPQwgYzcr2IecswJSGlFKUaBVLVGgWR0BhMQ8IRh+fdX2UKGgGaAloD0MIJlKazePdUsCUhpRSlGgVS0doFkdAYTi/WUbDM3V9lChoBmgJaA9DCNODglK0HEzAlIaUUpRoFUt2aBZHQGE6BdUsFt91fZQoaAZoCWgPQwgOSwM/qmVCwJSGlFKUaBVLV2gWR0BhOnxSYPXkdX2UKGgGaAloD0MIms3jMJg3QMCUhpRSlGgVS1VoFkdAYT4PXkHUt3V9lChoBmgJaA9DCKOs30xMF0rAlIaUUpRoFUt6aBZHQGE/Em6XjVB1fZQoaAZoCWgPQwjbMXVXdgE/wJSGlFKUaBVLc2gWR0BhQMyFfzBidX2UKGgGaAloD0MI5ueGpuynW8CUhpRSlGgVS2toFkdAYUFQBxPweHV9lChoBmgJaA9DCGmtaHOc5U7AlIaUUpRoFUtLaBZHQGFDMu3+dbx1fZQoaAZoCWgPQwh81F+vsJJWwJSGlFKUaBVLiGgWR0BhQ/BHkLhKdX2UKGgGaAloD0MIj9/b9GeXVsCUhpRSlGgVS2loFkdAYUPywwCbMHV9lChoBmgJaA9DCFJIMqt3/E/AlIaUUpRoFUtfaBZHQGFHpZfUnXx1fZQoaAZoCWgPQwjT3XU25AVIwJSGlFKUaBVLgGgWR0BhR4bfgrH3dX2UKGgGaAloD0MIqp7MP/oWKsCUhpRSlGgVS31oFkdAYUppRGc4HXV9lChoBmgJaA9DCHAIVWr2X1DAlIaUUpRoFUuLaBZHQGFcIzvZyuJ1fZQoaAZoCWgPQwiU+rK0Uy1WwJSGlFKUaBVLiGgWR0BhXORDCxeLdX2UKGgGaAloD0MIbF7VWS1QJUCUhpRSlGgVS3poFkdAYV7jTa0x/XV9lChoBmgJaA9DCNzwu+mWd1PAlIaUUpRoFUt/aBZHQGFfK1gH/tJ1fZQoaAZoCWgPQwguBDkoYco9wJSGlFKUaBVLk2gWR0BhYHF1jiGWdX2UKGgGaAloD0MIIXNlUO3Oc8CUhpRSlGgVS4FoFkdAYWMCU5dWyXV9lChoBmgJaA9DCIGVQ4tsT0DAlIaUUpRoFUtsaBZHQGFkiDujRD11fZQoaAZoCWgPQwgFxCRcyN1FwJSGlFKUaBVLfmgWR0BhZO2VmjCYdX2UKGgGaAloD0MI73IR34mzSsCUhpRSlGgVS31oFkdAYWV9roGIK3V9lChoBmgJaA9DCJ33/3HCxELAlIaUUpRoFUtwaBZHQGFl4+0PYnR1fZQoaAZoCWgPQwiqtTAL7WxSwJSGlFKUaBVLa2gWR0BhZ7zGxUvPdX2UKGgGaAloD0MIjDBFuTTkT8CUhpRSlGgVS4toFkdAYWnEKE3843V9lChoBmgJaA9DCPXabKzE0VvAlIaUUpRoFUubaBZHQGFrZftx+8Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77132098d8a3be7994eb7995655d82505d4881355fa02e7360cb0e988880ca81
|
3 |
+
size 147287
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f21189d00d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21189d0160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21189d01f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21189d0280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f21189d0310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f21189d03a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21189d0430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21189d04c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f21189d0550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21189d05e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21189d0670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21189d0700>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f21189cb720>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 114688,
|
47 |
+
"_total_timesteps": 100000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675161105824147021,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABPZjz6PjJE/Oge4PgEa6r6KoNQ++zujPQAAAAAAAAAALfoBvhiRZj8wz7y+KdxIv14KEjym65+9AAAAAAAAAACtjlK+ykgPP4zCNr6ShH6/9cFavvaoLrwAAAAAAAAAAJpxU7yb82w/3Zb/vZ5sMb8bxQY+uk0LPgAAAAAAAAAAzQ4cPfiutT/r//A9SjyKvagaj7xrw1U9AAAAAAAAAACGiFQ+W+Z6P6LkIT9cPUm/ZiksPQAMGT0AAAAAAAAAAM1wM70GmKc/U3GEvukzyL5LBhY+DbVTPgAAAAAAAAAAE/MkvxP6Yb7A1ru8Ap80OkRLA77T4nG8AACAPwAAgD+D0tE+3EyPvVhD9jvGv9W9ZgnmPOiN1rsAAAAAAAAAAHpvtr5OHmU/jg4uv6GrMb8f/Im9Uag+vgAAAAAAAAAAmNUxv+NLUr7bHIe9FoWJu3mL3D0qW869AAAAAAAAAACAw1o+4EZePzyrIT+D5Te/8ExCvqphRr0AAAAAAAAAAEBo3j2dajo/Dkg1PkH4Qr8IHH49rVdcPgAAAAAAAAAAgBF/PUx3qT+Nvdk+3KrMvjNaBL0IN3S8AAAAAAAAAACaYem80PoyP0IdyL00qVC/DcRwPXCawjwAAAAAAAAAACaLFj5g09Q+XIwqPoY5R7/g0xY+fQdxPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.1468799999999999,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP8iyYOKfRcCUhpRSlIwBbJRLZIwBdJRHQGDMP6sQumJ1fZQoaAZoCWgPQwgRVI1eDdQ8wJSGlFKUaBVLXWgWR0BgzAUlAu7IdX2UKGgGaAloD0MIg2xZvi4ZScCUhpRSlGgVS4BoFkdAYMy0k4WDYnV9lChoBmgJaA9DCH0iT5KuO1zAlIaUUpRoFUt2aBZHQGDNhoEjgQ91fZQoaAZoCWgPQwijyjDuBu9FwJSGlFKUaBVLemgWR0Bgz+xyGSIQdX2UKGgGaAloD0MIJLiRskUtXsCUhpRSlGgVS3doFkdAYNDOsT37DXV9lChoBmgJaA9DCGcqxCPx8iJAlIaUUpRoFUtnaBZHQGDRdwm3OOd1fZQoaAZoCWgPQwheMLjmjgJLwJSGlFKUaBVLTmgWR0Bg0yvmozeodX2UKGgGaAloD0MIVYhH4uWoUcCUhpRSlGgVS2BoFkdAYNNabF0gbXV9lChoBmgJaA9DCJOLMbCOyyVAlIaUUpRoFUttaBZHQGDUcqFyq+91fZQoaAZoCWgPQwiPxMvTuT5CwJSGlFKUaBVLYWgWR0Bg1OSEDhcadX2UKGgGaAloD0MIiSMPRJZ6bMCUhpRSlGgVS3ZoFkdAYNXPyCnP3XV9lChoBmgJaA9DCPMeZ5qw4T3AlIaUUpRoFUtaaBZHQGDWElu3trt1fZQoaAZoCWgPQwh9BWnGovE7wJSGlFKUaBVLVGgWR0Bg1/KKYRdydX2UKGgGaAloD0MIumddo+UNbcCUhpRSlGgVS79oFkdAYNhvkRzzVnV9lChoBmgJaA9DCHVat0Htp0PAlIaUUpRoFUtpaBZHQGDem4I8hcJ1fZQoaAZoCWgPQwivtfepKqpewJSGlFKUaBVLoGgWR0Bg39LBbfP5dX2UKGgGaAloD0MIoMTnTrAvS8CUhpRSlGgVS1VoFkdAYOCq1gH/tXV9lChoBmgJaA9DCLZpbK8FrUvAlIaUUpRoFUuUaBZHQGDhQmNR3vB1fZQoaAZoCWgPQwg1Cd6QRk1KwJSGlFKUaBVLX2gWR0Bg4bS/j81odX2UKGgGaAloD0MIwD3PnzawVsCUhpRSlGgVS3ZoFkdAYOF6QeV9nnV9lChoBmgJaA9DCAu1pnnHOmfAlIaUUpRoFUtpaBZHQGDh6CUX5311fZQoaAZoCWgPQwjm6PF7m/JXwJSGlFKUaBVLmGgWR0Bg4bF4s3AEdX2UKGgGaAloD0MIC89LxUaUZcCUhpRSlGgVS3NoFkdAYOGrK/20zHV9lChoBmgJaA9DCAKBzqRN+0bAlIaUUpRoFUugaBZHQGDjgB91EE11fZQoaAZoCWgPQwgZPEz75nZNwJSGlFKUaBVLYGgWR0Bg46ZtvXK9dX2UKGgGaAloD0MIu9Vz0vuqRcCUhpRSlGgVS4RoFkdAYOiudwvQGHV9lChoBmgJaA9DCHo4gem0FkXAlIaUUpRoFUt6aBZHQGDpv4VRDTl1fZQoaAZoCWgPQwiDwwsiUm85wJSGlFKUaBVLT2gWR0Bg68EidJ8OdX2UKGgGaAloD0MImDJwQEtvI0CUhpRSlGgVS6loFkdAYOu2ETQE6nV9lChoBmgJaA9DCHOiXYWUQUPAlIaUUpRoFUteaBZHQGDszLW7OFB1fZQoaAZoCWgPQwiHb2HdeLf1P5SGlFKUaBVLa2gWR0Bg8PPX05EMdX2UKGgGaAloD0MIE/BrJAnC7z+UhpRSlGgVS2ZoFkdAYPFepn6EanV9lChoBmgJaA9DCFhyFYvfnVXAlIaUUpRoFUtcaBZHQGDxjhcZ9/l1fZQoaAZoCWgPQwhyGqIKf+JMwJSGlFKUaBVLWWgWR0Bg8V0FKTStdX2UKGgGaAloD0MInuqQm+FIS8CUhpRSlGgVS3ZoFkdAYPNQP7N0NnV9lChoBmgJaA9DCDUnLzIBflnAlIaUUpRoFUt2aBZHQGDzyB06o2p1fZQoaAZoCWgPQwi1+1WA7xo4wJSGlFKUaBVLdmgWR0Bg88FY+0PZdX2UKGgGaAloD0MICTauf9f0WcCUhpRSlGgVS4FoFkdAYPWY2sJY1nV9lChoBmgJaA9DCNUhN8MN0DbAlIaUUpRoFUuFaBZHQGD2GA08/2V1fZQoaAZoCWgPQwi9/E6TGbdDwJSGlFKUaBVLYGgWR0Bg+QUi6g/UdX2UKGgGaAloD0MI/kP67esYTcCUhpRSlGgVS1doFkdAYPrPeHi3onV9lChoBmgJaA9DCKVlpN5TTUzAlIaUUpRoFUt5aBZHQGD/Yt6HCXR1fZQoaAZoCWgPQwgx7gbRWn1LwJSGlFKUaBVLS2gWR0BhAFHxz7uVdX2UKGgGaAloD0MIe2tgqwT/ScCUhpRSlGgVS4VoFkdAYQGefZmI03V9lChoBmgJaA9DCAvvchHf1ljAlIaUUpRoFUtYaBZHQGECwkX1rZd1fZQoaAZoCWgPQwh3Mc10rzJUwJSGlFKUaBVLUGgWR0BhA2SB9TgmdX2UKGgGaAloD0MIcv27PnNaU8CUhpRSlGgVS2NoFkdAYQRisGPgenV9lChoBmgJaA9DCKQczCbAqE/AlIaUUpRoFUt2aBZHQGEFm6f8Mux1fZQoaAZoCWgPQwhXBP9byQBIwJSGlFKUaBVLfWgWR0BhB6X4TK1YdX2UKGgGaAloD0MI7KaU18plYsCUhpRSlGgVS4BoFkdAYQgMXJo0ynV9lChoBmgJaA9DCBcMrrmjKULAlIaUUpRoFUtYaBZHQGEJW/zreIl1fZQoaAZoCWgPQwgMj/0sliJMwJSGlFKUaBVLb2gWR0BhCk61b7j1dX2UKGgGaAloD0MIls0cklo4P8CUhpRSlGgVS1loFkdAYQungHeJpHV9lChoBmgJaA9DCDzdeeI5SVHAlIaUUpRoFUufaBZHQGEN/hl18st1fZQoaAZoCWgPQwiZDwh0JnUswJSGlFKUaBVLVWgWR0BhEqqn3ta7dX2UKGgGaAloD0MIZqTeUzkZTcCUhpRSlGgVS1xoFkdAYRK8Yht+C3V9lChoBmgJaA9DCHpRu18FVkzAlIaUUpRoFUtzaBZHQGEWT5wfhdd1fZQoaAZoCWgPQwh9CRUcXgRDwJSGlFKUaBVLYGgWR0BhHLlaKUFCdX2UKGgGaAloD0MI+YIWEjAlYsCUhpRSlGgVS4RoFkdAYR2tVaOghHV9lChoBmgJaA9DCGdfeZCe21vAlIaUUpRoFUuAaBZHQGEenxz7uUl1fZQoaAZoCWgPQwgWTPxR1DFIwJSGlFKUaBVLhGgWR0BhHm+K0lZ6dX2UKGgGaAloD0MIy4CzlCwLOMCUhpRSlGgVS4toFkdAYSI47Rv3rXV9lChoBmgJaA9DCAZINIEiUVDAlIaUUpRoFUtPaBZHQGEjhz/6wdN1fZQoaAZoCWgPQwggKLfte4A9wJSGlFKUaBVLgWgWR0BhJbTYukDZdX2UKGgGaAloD0MI1vz4S4s+acCUhpRSlGgVS5FoFkdAYSYzTnaFmHV9lChoBmgJaA9DCAa4IFuWy1fAlIaUUpRoFUt5aBZHQGEoRyfcvdx1fZQoaAZoCWgPQwh3FVJ+UjUuwJSGlFKUaBVLT2gWR0BhKCGgzxgBdX2UKGgGaAloD0MItkqwOJzyUMCUhpRSlGgVS2RoFkdAYSjgOz6acHV9lChoBmgJaA9DCBB6Nqs+YzjAlIaUUpRoFUugaBZHQGEqN5dGAkN1fZQoaAZoCWgPQwi/0vnwLBdGwJSGlFKUaBVLkWgWR0BhKwHE/B3zdX2UKGgGaAloD0MIXJGYoIZXUsCUhpRSlGgVS0JoFkdAYSws5GSZB3V9lChoBmgJaA9DCKG7JM6KF1DAlIaUUpRoFUtNaBZHQGEwWQwK0D51fZQoaAZoCWgPQwgYzcr2IecswJSGlFKUaBVLVGgWR0BhMQ8IRh+fdX2UKGgGaAloD0MIJlKazePdUsCUhpRSlGgVS0doFkdAYTi/WUbDM3V9lChoBmgJaA9DCNODglK0HEzAlIaUUpRoFUt2aBZHQGE6BdUsFt91fZQoaAZoCWgPQwgOSwM/qmVCwJSGlFKUaBVLV2gWR0BhOnxSYPXkdX2UKGgGaAloD0MIms3jMJg3QMCUhpRSlGgVS1VoFkdAYT4PXkHUt3V9lChoBmgJaA9DCKOs30xMF0rAlIaUUpRoFUt6aBZHQGE/Em6XjVB1fZQoaAZoCWgPQwjbMXVXdgE/wJSGlFKUaBVLc2gWR0BhQMyFfzBidX2UKGgGaAloD0MI5ueGpuynW8CUhpRSlGgVS2toFkdAYUFQBxPweHV9lChoBmgJaA9DCGmtaHOc5U7AlIaUUpRoFUtLaBZHQGFDMu3+dbx1fZQoaAZoCWgPQwh81F+vsJJWwJSGlFKUaBVLiGgWR0BhQ/BHkLhKdX2UKGgGaAloD0MIj9/b9GeXVsCUhpRSlGgVS2loFkdAYUPywwCbMHV9lChoBmgJaA9DCFJIMqt3/E/AlIaUUpRoFUtfaBZHQGFHpZfUnXx1fZQoaAZoCWgPQwjT3XU25AVIwJSGlFKUaBVLgGgWR0BhR4bfgrH3dX2UKGgGaAloD0MIqp7MP/oWKsCUhpRSlGgVS31oFkdAYUppRGc4HXV9lChoBmgJaA9DCHAIVWr2X1DAlIaUUpRoFUuLaBZHQGFcIzvZyuJ1fZQoaAZoCWgPQwiU+rK0Uy1WwJSGlFKUaBVLiGgWR0BhXORDCxeLdX2UKGgGaAloD0MIbF7VWS1QJUCUhpRSlGgVS3poFkdAYV7jTa0x/XV9lChoBmgJaA9DCNzwu+mWd1PAlIaUUpRoFUt/aBZHQGFfK1gH/tJ1fZQoaAZoCWgPQwguBDkoYco9wJSGlFKUaBVLk2gWR0BhYHF1jiGWdX2UKGgGaAloD0MIIXNlUO3Oc8CUhpRSlGgVS4FoFkdAYWMCU5dWyXV9lChoBmgJaA9DCIGVQ4tsT0DAlIaUUpRoFUtsaBZHQGFkiDujRD11fZQoaAZoCWgPQwgFxCRcyN1FwJSGlFKUaBVLfmgWR0BhZO2VmjCYdX2UKGgGaAloD0MI73IR34mzSsCUhpRSlGgVS31oFkdAYWV9roGIK3V9lChoBmgJaA9DCJ33/3HCxELAlIaUUpRoFUtwaBZHQGFl4+0PYnR1fZQoaAZoCWgPQwiqtTAL7WxSwJSGlFKUaBVLa2gWR0BhZ7zGxUvPdX2UKGgGaAloD0MIjDBFuTTkT8CUhpRSlGgVS4toFkdAYWnEKE3843V9lChoBmgJaA9DCPXabKzE0VvAlIaUUpRoFUubaBZHQGFrZftx+8Z1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 28,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d50b47a917e6c4ca0dbe6791656445323379c9778bfaf80f7990f882e7380e4
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b2fe9f4461117b15e9465b27f30173575994481737f6c6b37a0f72000a3af54
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (258 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -231.74097652953424, "std_reward": 50.98699076820243, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-31T10:34:14.970977"}
|