Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
---
|
5 |
+
|
6 |
+
# Meta-Llama-3-8B-Instruct-bf16-GGUF
|
7 |
+
|
8 |
+
This is [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), converted to GGUF without changing tensor data type. Moreover, the new correct pre-tokenizer `llama-bpe` is used ([ref](https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2094991999)), and the EOS token is correctly set to `<|eot_id|>` ([ref](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/commit/a8977699a3d0820e80129fb3c93c20fbd9972c41)).
|
9 |
+
|
10 |
+
The `llama.cpp` output for this model is shown below for reference.
|
11 |
+
|
12 |
+
```
|
13 |
+
Log start
|
14 |
+
main: build = 2842 (18e43766)
|
15 |
+
main: built with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
|
16 |
+
main: seed = 1715355914
|
17 |
+
llama_model_loader: loaded meta data with 22 key-value pairs and 291 tensors from /media/dylan/SanDisk/LLMs/Meta-Llama-3-8B-Instruct-bf16.gguf (version GGUF V3 (latest))
|
18 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
19 |
+
llama_model_loader: - kv 0: general.architecture str = llama
|
20 |
+
llama_model_loader: - kv 1: general.name str = Meta-Llama-3-8B-Instruct
|
21 |
+
llama_model_loader: - kv 2: llama.block_count u32 = 32
|
22 |
+
llama_model_loader: - kv 3: llama.context_length u32 = 8192
|
23 |
+
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
|
24 |
+
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
|
25 |
+
llama_model_loader: - kv 6: llama.attention.head_count u32 = 32
|
26 |
+
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8
|
27 |
+
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 500000.000000
|
28 |
+
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
|
29 |
+
llama_model_loader: - kv 10: general.file_type u32 = 32
|
30 |
+
llama_model_loader: - kv 11: llama.vocab_size u32 = 128256
|
31 |
+
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
|
32 |
+
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
|
33 |
+
llama_model_loader: - kv 14: tokenizer.ggml.pre str = llama-bpe
|
34 |
+
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
35 |
+
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
36 |
+
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
|
37 |
+
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 128000
|
38 |
+
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 128009
|
39 |
+
llama_model_loader: - kv 20: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
|
40 |
+
llama_model_loader: - kv 21: general.quantization_version u32 = 2
|
41 |
+
llama_model_loader: - type f32: 65 tensors
|
42 |
+
llama_model_loader: - type bf16: 226 tensors
|
43 |
+
llm_load_vocab: special tokens definition check successful ( 256/128256 ).
|
44 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
45 |
+
llm_load_print_meta: arch = llama
|
46 |
+
llm_load_print_meta: vocab type = BPE
|
47 |
+
llm_load_print_meta: n_vocab = 128256
|
48 |
+
llm_load_print_meta: n_merges = 280147
|
49 |
+
llm_load_print_meta: n_ctx_train = 8192
|
50 |
+
llm_load_print_meta: n_embd = 4096
|
51 |
+
llm_load_print_meta: n_head = 32
|
52 |
+
llm_load_print_meta: n_head_kv = 8
|
53 |
+
llm_load_print_meta: n_layer = 32
|
54 |
+
llm_load_print_meta: n_rot = 128
|
55 |
+
llm_load_print_meta: n_embd_head_k = 128
|
56 |
+
llm_load_print_meta: n_embd_head_v = 128
|
57 |
+
llm_load_print_meta: n_gqa = 4
|
58 |
+
llm_load_print_meta: n_embd_k_gqa = 1024
|
59 |
+
llm_load_print_meta: n_embd_v_gqa = 1024
|
60 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
61 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
62 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
63 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
64 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
65 |
+
llm_load_print_meta: n_ff = 14336
|
66 |
+
llm_load_print_meta: n_expert = 0
|
67 |
+
llm_load_print_meta: n_expert_used = 0
|
68 |
+
llm_load_print_meta: causal attn = 1
|
69 |
+
llm_load_print_meta: pooling type = 0
|
70 |
+
llm_load_print_meta: rope type = 0
|
71 |
+
llm_load_print_meta: rope scaling = linear
|
72 |
+
llm_load_print_meta: freq_base_train = 500000.0
|
73 |
+
llm_load_print_meta: freq_scale_train = 1
|
74 |
+
llm_load_print_meta: n_yarn_orig_ctx = 8192
|
75 |
+
llm_load_print_meta: rope_finetuned = unknown
|
76 |
+
llm_load_print_meta: ssm_d_conv = 0
|
77 |
+
llm_load_print_meta: ssm_d_inner = 0
|
78 |
+
llm_load_print_meta: ssm_d_state = 0
|
79 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
80 |
+
llm_load_print_meta: model type = 8B
|
81 |
+
llm_load_print_meta: model ftype = BF16
|
82 |
+
llm_load_print_meta: model params = 8.03 B
|
83 |
+
llm_load_print_meta: model size = 14.96 GiB (16.00 BPW)
|
84 |
+
llm_load_print_meta: general.name = Meta-Llama-3-8B-Instruct
|
85 |
+
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
|
86 |
+
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
|
87 |
+
llm_load_print_meta: LF token = 128 'Ä'
|
88 |
+
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
|
89 |
+
```
|