Update README.md
Browse files
README.md
CHANGED
@@ -5,14 +5,11 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
|
|
8 |
---
|
9 |
|
10 |
# ddobokki/unsup-simcse-klue-roberta-small
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
-
|
14 |
-
<!--- Describe your model here -->
|
15 |
-
|
16 |
## Usage (Sentence-Transformers)
|
17 |
|
18 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
@@ -31,98 +28,5 @@ model = SentenceTransformer('ddobokki/unsup-simcse-klue-roberta-small')
|
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
## Usage (HuggingFace Transformers)
|
38 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
-
|
40 |
-
```python
|
41 |
-
from transformers import AutoTokenizer, AutoModel
|
42 |
-
import torch
|
43 |
-
|
44 |
-
|
45 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
46 |
-
def mean_pooling(model_output, attention_mask):
|
47 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
-
|
51 |
-
|
52 |
-
# Sentences we want sentence embeddings for
|
53 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
-
|
55 |
-
# Load model from HuggingFace Hub
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained('ddobokki/unsup-simcse-klue-roberta-small')
|
57 |
-
model = AutoModel.from_pretrained('ddobokki/unsup-simcse-klue-roberta-small')
|
58 |
-
|
59 |
-
# Tokenize sentences
|
60 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
-
|
62 |
-
# Compute token embeddings
|
63 |
-
with torch.no_grad():
|
64 |
-
model_output = model(**encoded_input)
|
65 |
-
|
66 |
-
# Perform pooling. In this case, mean pooling.
|
67 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
-
|
69 |
-
print("Sentence embeddings:")
|
70 |
-
print(sentence_embeddings)
|
71 |
-
```
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
## Evaluation Results
|
76 |
-
|
77 |
-
<!--- Describe how your model was evaluated -->
|
78 |
-
|
79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ddobokki/unsup-simcse-klue-roberta-small)
|
80 |
-
|
81 |
-
|
82 |
-
## Training
|
83 |
-
The model was trained with the parameters:
|
84 |
-
|
85 |
-
**DataLoader**:
|
86 |
-
|
87 |
-
`torch.utils.data.dataloader.DataLoader` of length 11312 with parameters:
|
88 |
-
```
|
89 |
-
{'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
90 |
-
```
|
91 |
-
|
92 |
-
**Loss**:
|
93 |
-
|
94 |
-
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
95 |
-
```
|
96 |
-
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
97 |
-
```
|
98 |
-
|
99 |
-
Parameters of the fit()-Method:
|
100 |
-
```
|
101 |
-
{
|
102 |
-
"epochs": 1,
|
103 |
-
"evaluation_steps": 1131,
|
104 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
105 |
-
"max_grad_norm": 1,
|
106 |
-
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
107 |
-
"optimizer_params": {
|
108 |
-
"lr": 5e-05
|
109 |
-
},
|
110 |
-
"scheduler": "WarmupLinear",
|
111 |
-
"steps_per_epoch": null,
|
112 |
-
"warmup_steps": 1132,
|
113 |
-
"weight_decay": 0.01
|
114 |
-
}
|
115 |
-
```
|
116 |
-
|
117 |
-
|
118 |
-
## Full Model Architecture
|
119 |
-
```
|
120 |
-
SentenceTransformer(
|
121 |
-
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: RobertaModel
|
122 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
123 |
-
)
|
124 |
-
```
|
125 |
-
|
126 |
-
## Citing & Authors
|
127 |
-
|
128 |
-
<!--- Describe where people can find more information -->
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
- ko
|
9 |
---
|
10 |
|
11 |
# ddobokki/unsup-simcse-klue-roberta-small
|
12 |
|
|
|
|
|
|
|
|
|
13 |
## Usage (Sentence-Transformers)
|
14 |
|
15 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
28 |
embeddings = model.encode(sentences)
|
29 |
print(embeddings)
|
30 |
```
|
31 |
+
(개발중)
|
32 |
+
git:https://github.com/ddobokki/KoSimCSE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|