File size: 2,317 Bytes
0532658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: google/vit-large-patch32-384
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
model-index:
- name: vit-large-patch32-384
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: F1
type: f1
value: 0.9763018966303854
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-large-patch32-384
This model is a fine-tuned version of [google/vit-large-patch32-384](https://huggingface.co/google/vit-large-patch32-384) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0127
- F1: 0.9763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1312 | 0.99 | 53 | 0.1215 | 0.7860 |
| 0.0831 | 1.99 | 107 | 0.0570 | 0.9350 |
| 0.0441 | 3.0 | 161 | 0.0348 | 0.9475 |
| 0.0423 | 4.0 | 215 | 0.0342 | 0.9186 |
| 0.0249 | 4.99 | 268 | 0.0232 | 0.9594 |
| 0.0168 | 5.99 | 322 | 0.0279 | 0.9414 |
| 0.0098 | 7.0 | 376 | 0.0242 | 0.9460 |
| 0.0133 | 8.0 | 430 | 0.0181 | 0.9637 |
| 0.0156 | 8.99 | 483 | 0.0101 | 0.9804 |
| 0.0114 | 9.86 | 530 | 0.0127 | 0.9763 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|