File size: 1,320 Bytes
1b3cb9b 005fa4b 1b3cb9b 8385c2c 1b3cb9b 263e39f d16b061 263e39f 1b3cb9b d16b061 1b3cb9b 2bae71c 1b3cb9b 8385c2c 1b3cb9b d16b061 1b3cb9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_large_summarise
results: []
---
![SGH logo.png](https://s3.amazonaws.com/moonup/production/uploads/1667143139655-631feef1124782a19eff4243.png)
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the SGH news articles and summaries dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7389
- Rouge1: 0.5297
- Rouge2: 0.3602
- Rougel: 0.3961
- Rougelsum: 0.4821
- Gen Len: 137.9091
## Model description
This model was created to generate summaries of news articles.
## Intended uses & limitations
The model takes up to maximum article length of 1024 tokens and generates a summary of maximum length of 512 tokens.
## Training data
This model was trained on 100+ articles and summaries from SGH.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- label_smoothing_factor: 0.1
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|