File size: 4,267 Bytes
08f40ee
7377e91
 
08f40ee
7377e91
08f40ee
 
7377e91
08f40ee
 
 
 
 
 
 
 
 
7377e91
 
08f40ee
 
 
 
 
 
 
ae07307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f40ee
 
 
 
 
 
 
01de08e
08f40ee
 
 
 
3031cda
 
 
 
 
 
 
 
 
08f40ee
 
 
 
 
 
 
 
 
 
01de08e
 
 
 
 
 
 
08f40ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language:
- fr
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: deepdml/whisper-medium-mix-fr
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 fr
      type: mozilla-foundation/common_voice_11_0
      config: fr
      split: test
      args: fr
    metrics:
    - name: Wer
      type: wer
      value: 11.227820307400155
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: FLEURS ASR
      type: google/fleurs
      config: fr_fr
      split: test
      args: fr
    metrics:
    - name: WER
      type: wer
      value: 9.3526
    - name: Cer
      type: cer
      value: 4.144
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Multilingual LibriSpeech
      type: facebook/multilingual_librispeech
      config: french
      split: test
      args:
        language: fr
    metrics:
    - name: WER
      type: wer
      value: 6.3468
    - name: Cer
      type: cer
      value: 3.1561
  - task:
      type: Automatic Speech Recognition
      name: speech-recognition
    dataset:
      name: VoxPopuli
      type: facebook/voxpopuli
      config: fr
      split: test
      args:
        language: fr
    metrics:
    - name: WER
      type: wer
      value: 10.0653
    - name: Cer
      type: cer
      value: 6.5456
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deepdml/whisper-medium-mix-fr

This model is a fine-tuned version of [deepdml/whisper-medium-mix-fr](https://huggingface.co/deepdml/whisper-medium-mix-fr) on the mozilla-foundation/common_voice_11_0, google/fleurs, facebook/multilingual_librispeech and facebook/voxpopuli datasets.
It achieves the following results on the evaluation set:
- Loss: 0.2599
- Wer: 11.2278

Using the [evalutaion script](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_eval_whisper_streaming.py) provided in the Whisper Sprint the model achieves these results on the test sets (WER):

- **google/fleurs: 9.3526 %**  
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="google/fleurs" --config="fr_fr" --device=0 --language="fr")
- **facebook/multilingual_librispeech: 6.3468 %**  
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/multilingual_librispeech" --config="french" --device=0 --language="fr")
- **facebook/voxpopuli: 10.0653 %**  
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/voxpopuli" --config="fr" --device=0 --language="fr")

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

Training data used:
- **mozilla-foundation/common_voice_11_0:** fr, train+validation
- **google/fleurs:** fr_fr, train
- **facebook/multilingual_librispeech:** french, train
- **facebook/voxpopuli:** fr, train
- 
Evaluating over test split from mozilla-foundation/common_voice_11_0 dataset.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0855        | 0.25  | 1000 | 0.2826          | 12.4230 |
| 0.0569        | 0.5   | 2000 | 0.2768          | 11.9577 |
| 0.0724        | 0.75  | 3000 | 0.2670          | 11.6106 |
| 0.069         | 1.0   | 4000 | 0.2599          | 11.2278 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2