--- language: - gl license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small gl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: gl split: test args: gl metrics: - name: Wer type: wer value: 8.830983319509722 --- # Whisper Small gl This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2794 - Wer: 8.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1468 | 1.8182 | 1000 | 0.2098 | 9.3816 | | 0.0393 | 3.6364 | 2000 | 0.2172 | 8.9370 | | 0.0087 | 5.4545 | 3000 | 0.2506 | 8.7123 | | 0.0034 | 7.2727 | 4000 | 0.2720 | 8.8114 | | 0.0026 | 9.0909 | 5000 | 0.2794 | 8.8310 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1