--- language: - pt license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-small datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small pt results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: pt split: test args: pt metrics: - type: wer value: 11.034559928386457 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: pt_br split: test metrics: - type: wer value: 10.68 name: WER --- # Whisper Small pt This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3836 - Wer: 11.0346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1139 | 2.0325 | 1000 | 0.2474 | 10.7516 | | 0.024 | 4.0650 | 2000 | 0.2882 | 10.7692 | | 0.0065 | 6.0976 | 3000 | 0.3367 | 11.0889 | | 0.0028 | 8.1301 | 4000 | 0.3731 | 11.0362 | | 0.0023 | 10.1626 | 5000 | 0.3836 | 11.0346 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1