JaMe76 commited on
Commit
6a33720
1 Parent(s): be07aec

Add model description, how to use, how trained, how to fine tune

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - Tensorflow
4
+ license: apache-2.0
5
+ datasets:
6
+ - Pubtabnet
7
+ ---
8
+
9
+
10
+ # Tensorpacks Cascade-RCNN with FPN and Group Normalization on ResNext32xd4-50 trained on Pubtabnet for Semantic Segmentation of tables.
11
+
12
+ The model and its training code has been mainly taken from: [Tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) .
13
+
14
+ Regarding the dataset, please check: [Xu Zhong et. all. - Image-based table recognition: data, model, and evaluation](https://arxiv.org/abs/1911.10683).
15
+
16
+ The model has been trained on detecting cells from tables. Note, that the datasets contains tables only. Therefore, it is required to perform a table detection task before
17
+ detecting cells.
18
+
19
+ The code has been adapted so that it can be used in a **deep**doctection pipeline.
20
+
21
+ ## How this model can be used
22
+
23
+ This model can be used with the **deep**doctection in a full pipeline, along with table recognition and OCR. Check the general instruction following this [Get_started](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Get_Started.ipynb) tutorial.
24
+
25
+ ## How this model was trained.
26
+
27
+ To recreate the model run on the **deep**doctection framework, run:
28
+
29
+ ```python
30
+
31
+ >>> import os
32
+ >>> from deep_doctection.datasets import DatasetRegistry
33
+ >>> from deep_doctection.eval import MetricRegistry
34
+ >>> from deep_doctection.utils import get_configs_dir_path
35
+ >>> from deep_doctection.train import train_faster_rcnn
36
+
37
+ pubtabnet = DatasetRegistry.get_dataset("pubtabnet")
38
+ pubtabnet.dataflow.categories.filter_categories(categories="CELL")
39
+
40
+ path_config_yaml=os.path.join(get_configs_dir_path(),"tp/cell/conf_frcnn_cell.yaml")
41
+ path_weights = ""
42
+
43
+ dataset_train = pubtabnet
44
+ config_overwrite=["TRAIN.STEPS_PER_EPOCH=500","TRAIN.STARTING_EPOCH=1",
45
+ "TRAIN.CHECKPOINT_PERIOD=50","BACKBONE.FREEZE_AT=0", "PREPROC.TRAIN_SHORT_EDGE_SIZE=[200,600]"]
46
+ build_train_config=["max_datapoints=500000"]
47
+ dataset_val = pubtabnet
48
+ build_val_config = ["max_datapoints=4000"]
49
+
50
+ coco_metric = MetricRegistry.get_metric("coco")
51
+ coco_metric.set_params(max_detections=[50,200,600], area_range=[[0,1000000],[0,200],[200,800],[800,1000000]])
52
+
53
+ train_faster_rcnn(path_config_yaml=path_config_yaml,
54
+ dataset_train=dataset_train,
55
+ path_weights=path_weights,
56
+ config_overwrite=config_overwrite,
57
+ log_dir="/path/to/dir",
58
+ build_train_config=build_train_config,
59
+ dataset_val=dataset_val,
60
+ build_val_config=build_val_config,
61
+ metric=coco_metric,
62
+ pipeline_component_name="ImageLayoutService"
63
+ )
64
+ ```
65
+
66
+ ## How to fine-tune this model
67
+
68
+ To fine tune this model, please check this [Fine-tune](https://github.com/deepdoctection/deepdoctection/blob/master/notebooks/Fine_Tune.ipynb) tutorial.