Safetensors
llama
deepseekrzz commited on
Commit
04e458a
1 Parent(s): 9c9a4f1

Delete modeling_deepseek.py

Browse files
Files changed (1) hide show
  1. modeling_deepseek.py +0 -1916
modeling_deepseek.py DELETED
@@ -1,1916 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch DeepSeek model."""
21
- import math
22
- import warnings
23
- from typing import List, Optional, Tuple, Union
24
-
25
- import torch
26
- import torch.nn.functional as F
27
- import torch.utils.checkpoint
28
- from torch import nn
29
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
-
31
- from transformers.activations import ACT2FN
32
- from transformers.cache_utils import Cache, DynamicCache
33
- from transformers.modeling_attn_mask_utils import (
34
- AttentionMaskConverter,
35
- _prepare_4d_attention_mask,
36
- _prepare_4d_causal_attention_mask,
37
- )
38
- from transformers.modeling_outputs import (
39
- BaseModelOutputWithPast,
40
- CausalLMOutputWithPast,
41
- SequenceClassifierOutputWithPast,
42
- )
43
- from transformers.modeling_utils import PreTrainedModel
44
- from transformers.pytorch_utils import (
45
- ALL_LAYERNORM_LAYERS,
46
- is_torch_greater_or_equal_than_1_13,
47
- )
48
- from transformers.utils import (
49
- add_start_docstrings,
50
- add_start_docstrings_to_model_forward,
51
- is_flash_attn_2_available,
52
- is_flash_attn_greater_or_equal_2_10,
53
- logging,
54
- replace_return_docstrings,
55
- )
56
- from transformers.utils.import_utils import is_torch_fx_available
57
- from .configuration_deepseek import DeepseekV2Config
58
- import torch.distributed as dist
59
- import numpy as np
60
-
61
- if is_flash_attn_2_available():
62
- from flash_attn import flash_attn_func, flash_attn_varlen_func
63
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
-
65
-
66
- # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
- # It means that the function will not be traced through and simply appear as a node in the graph.
68
- if is_torch_fx_available():
69
- if not is_torch_greater_or_equal_than_1_13:
70
- import torch.fx
71
-
72
- _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
-
74
-
75
- logger = logging.get_logger(__name__)
76
-
77
- _CONFIG_FOR_DOC = "DeepseekV2Config"
78
-
79
-
80
- def _get_unpad_data(attention_mask):
81
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
- max_seqlen_in_batch = seqlens_in_batch.max().item()
84
- cu_seqlens = F.pad(
85
- torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
- )
87
- return (
88
- indices,
89
- cu_seqlens,
90
- max_seqlen_in_batch,
91
- )
92
-
93
-
94
- class DeepseekV2RMSNorm(nn.Module):
95
- def __init__(self, hidden_size, eps=1e-6):
96
- """
97
- DeepseekV2RMSNorm is equivalent to T5LayerNorm
98
- """
99
- super().__init__()
100
- self.weight = nn.Parameter(torch.ones(hidden_size))
101
- self.variance_epsilon = eps
102
-
103
- def forward(self, hidden_states):
104
- input_dtype = hidden_states.dtype
105
- hidden_states = hidden_states.to(torch.float32)
106
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
- return self.weight * hidden_states.to(input_dtype)
109
-
110
-
111
- ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
112
-
113
-
114
- class DeepseekV2RotaryEmbedding(nn.Module):
115
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
- super().__init__()
117
-
118
- self.dim = dim
119
- self.max_position_embeddings = max_position_embeddings
120
- self.base = base
121
- inv_freq = 1.0 / (
122
- self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
- )
124
- self.register_buffer("inv_freq", inv_freq, persistent=False)
125
-
126
- # Build here to make `torch.jit.trace` work.
127
- self._set_cos_sin_cache(
128
- seq_len=max_position_embeddings,
129
- device=self.inv_freq.device,
130
- dtype=torch.get_default_dtype(),
131
- )
132
- self.max_seq_len_cached = None
133
-
134
- def _set_cos_sin_cache(self, seq_len, device, dtype):
135
- self.max_seq_len_cached = seq_len
136
- t = torch.arange(
137
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
- )
139
-
140
- freqs = torch.outer(t, self.inv_freq.to(t.device))
141
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
- emb = torch.cat((freqs, freqs), dim=-1)
143
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
-
146
- def forward(self, x, seq_len=None):
147
- # x: [bs, num_attention_heads, seq_len, head_size]
148
- if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
-
151
- return (
152
- self.cos_cached[:seq_len].to(dtype=x.dtype),
153
- self.sin_cached[:seq_len].to(dtype=x.dtype),
154
- )
155
-
156
-
157
- # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
158
- class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
159
- """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
-
161
- def __init__(
162
- self,
163
- dim,
164
- max_position_embeddings=2048,
165
- base=10000,
166
- device=None,
167
- scaling_factor=1.0,
168
- ):
169
- self.scaling_factor = scaling_factor
170
- super().__init__(dim, max_position_embeddings, base, device)
171
-
172
- def _set_cos_sin_cache(self, seq_len, device, dtype):
173
- self.max_seq_len_cached = seq_len
174
- t = torch.arange(
175
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
- )
177
- t = t / self.scaling_factor
178
-
179
- freqs = torch.outer(t, self.inv_freq)
180
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
- emb = torch.cat((freqs, freqs), dim=-1)
182
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
-
185
-
186
- # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
187
- class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
188
- """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
-
190
- def __init__(
191
- self,
192
- dim,
193
- max_position_embeddings=2048,
194
- base=10000,
195
- device=None,
196
- scaling_factor=1.0,
197
- ):
198
- self.scaling_factor = scaling_factor
199
- super().__init__(dim, max_position_embeddings, base, device)
200
-
201
- def _set_cos_sin_cache(self, seq_len, device, dtype):
202
- self.max_seq_len_cached = seq_len
203
-
204
- if seq_len > self.max_position_embeddings:
205
- base = self.base * (
206
- (self.scaling_factor * seq_len / self.max_position_embeddings)
207
- - (self.scaling_factor - 1)
208
- ) ** (self.dim / (self.dim - 2))
209
- inv_freq = 1.0 / (
210
- base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
- )
212
- self.register_buffer("inv_freq", inv_freq, persistent=False)
213
-
214
- t = torch.arange(
215
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
- )
217
-
218
- freqs = torch.outer(t, self.inv_freq)
219
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
- emb = torch.cat((freqs, freqs), dim=-1)
221
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
-
224
-
225
- # Inverse dim formula to find dim based on number of rotations
226
- def yarn_find_correction_dim(
227
- num_rotations, dim, base=10000, max_position_embeddings=2048
228
- ):
229
- return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
- 2 * math.log(base)
231
- )
232
-
233
-
234
- # Find dim range bounds based on rotations
235
- def yarn_find_correction_range(
236
- low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
- ):
238
- low = math.floor(
239
- yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
- )
241
- high = math.ceil(
242
- yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
- )
244
- return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
-
246
-
247
- def yarn_get_mscale(scale=1, mscale=1):
248
- if scale <= 1:
249
- return 1.0
250
- return 0.1 * mscale * math.log(scale) + 1.0
251
-
252
-
253
- def yarn_linear_ramp_mask(min, max, dim):
254
- if min == max:
255
- max += 0.001 # Prevent singularity
256
-
257
- linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
- ramp_func = torch.clamp(linear_func, 0, 1)
259
- return ramp_func
260
-
261
-
262
- class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
263
-
264
- def __init__(
265
- self,
266
- dim,
267
- max_position_embeddings=2048,
268
- base=10000,
269
- device=None,
270
- scaling_factor=1.0,
271
- original_max_position_embeddings=4096,
272
- beta_fast=32,
273
- beta_slow=1,
274
- mscale=1,
275
- mscale_all_dim=0,
276
- ):
277
- self.scaling_factor = scaling_factor
278
- self.original_max_position_embeddings = original_max_position_embeddings
279
- self.beta_fast = beta_fast
280
- self.beta_slow = beta_slow
281
- self.mscale = mscale
282
- self.mscale_all_dim = mscale_all_dim
283
- super().__init__(dim, max_position_embeddings, base, device)
284
-
285
- def _set_cos_sin_cache(self, seq_len, device, dtype):
286
- self.max_seq_len_cached = seq_len
287
- dim = self.dim
288
-
289
- freq_extra = 1.0 / (
290
- self.base
291
- ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
- )
293
- freq_inter = 1.0 / (
294
- self.scaling_factor
295
- * self.base
296
- ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
- )
298
-
299
- low, high = yarn_find_correction_range(
300
- self.beta_fast,
301
- self.beta_slow,
302
- dim,
303
- self.base,
304
- self.original_max_position_embeddings,
305
- )
306
- inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
- device=device, dtype=torch.float32
308
- )
309
- inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
- self.register_buffer("inv_freq", inv_freq, persistent=False)
311
-
312
- t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
-
314
- freqs = torch.outer(t, inv_freq)
315
-
316
- _mscale = float(
317
- yarn_get_mscale(self.scaling_factor, self.mscale)
318
- / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
- )
320
-
321
- emb = torch.cat((freqs, freqs), dim=-1)
322
- self.register_buffer(
323
- "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
- )
325
- self.register_buffer(
326
- "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
- )
328
-
329
-
330
- # Copied from transformers.models.llama.modeling_llama.rotate_half
331
- def rotate_half(x):
332
- """Rotates half the hidden dims of the input."""
333
- x1 = x[..., : x.shape[-1] // 2]
334
- x2 = x[..., x.shape[-1] // 2 :]
335
- return torch.cat((-x2, x1), dim=-1)
336
-
337
-
338
- # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
- """Applies Rotary Position Embedding to the query and key tensors.
341
-
342
- Args:
343
- q (`torch.Tensor`): The query tensor.
344
- k (`torch.Tensor`): The key tensor.
345
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
- sin (`torch.Tensor`): The sine part of the rotary embedding.
347
- position_ids (`torch.Tensor`):
348
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
- used to pass offsetted position ids when working with a KV-cache.
350
- unsqueeze_dim (`int`, *optional*, defaults to 1):
351
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
- Returns:
358
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
- """
360
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
-
363
- b, h, s, d = q.shape
364
- q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
-
366
- b, h, s, d = k.shape
367
- k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
-
369
- q_embed = (q * cos) + (rotate_half(q) * sin)
370
- k_embed = (k * cos) + (rotate_half(k) * sin)
371
- return q_embed, k_embed
372
-
373
-
374
- class DeepseekV2MLP(nn.Module):
375
- def __init__(self, config, hidden_size=None, intermediate_size=None):
376
- super().__init__()
377
- self.config = config
378
- self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
- self.intermediate_size = (
380
- config.intermediate_size if intermediate_size is None else intermediate_size
381
- )
382
-
383
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
- self.act_fn = ACT2FN[config.hidden_act]
387
-
388
- def forward(self, x):
389
- down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
- return down_proj
391
-
392
-
393
- class MoEGate(nn.Module):
394
- def __init__(self, config):
395
- super().__init__()
396
- self.config = config
397
- self.top_k = config.num_experts_per_tok
398
- self.n_routed_experts = config.n_routed_experts
399
- self.routed_scaling_factor = config.routed_scaling_factor
400
- self.scoring_func = config.scoring_func
401
- self.alpha = config.aux_loss_alpha
402
- self.seq_aux = config.seq_aux
403
- self.topk_method = config.topk_method
404
- self.n_group = config.n_group
405
- self.topk_group = config.topk_group
406
-
407
- # topk selection algorithm
408
- self.norm_topk_prob = config.norm_topk_prob
409
- self.gating_dim = config.hidden_size
410
- self.weight = nn.Parameter(
411
- torch.empty((self.n_routed_experts, self.gating_dim))
412
- )
413
- self.reset_parameters()
414
-
415
- def reset_parameters(self) -> None:
416
- import torch.nn.init as init
417
-
418
- init.kaiming_uniform_(self.weight, a=math.sqrt(5))
419
-
420
- def forward(self, hidden_states):
421
- bsz, seq_len, h = hidden_states.shape
422
- ### compute gating score
423
- hidden_states = hidden_states.view(-1, h)
424
- logits = F.linear(
425
- hidden_states.type(torch.float32), self.weight.type(torch.float32), None
426
- )
427
- if self.scoring_func == "softmax":
428
- scores = logits.softmax(dim=-1, dtype=torch.float32)
429
- else:
430
- raise NotImplementedError(
431
- f"insupportable scoring function for MoE gating: {self.scoring_func}"
432
- )
433
-
434
- ### select top-k experts
435
- if self.topk_method == "greedy":
436
- topk_weight, topk_idx = torch.topk(
437
- scores, k=self.top_k, dim=-1, sorted=False
438
- )
439
- elif self.topk_method == "group_limited_greedy":
440
- group_scores = (
441
- scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
442
- ) # [n, n_group]
443
- group_idx = torch.topk(
444
- group_scores, k=self.topk_group, dim=-1, sorted=False
445
- )[
446
- 1
447
- ] # [n, top_k_group]
448
- group_mask = torch.zeros_like(group_scores) # [n, n_group]
449
- group_mask.scatter_(1, group_idx, 1) # [n, n_group]
450
- score_mask = (
451
- group_mask.unsqueeze(-1)
452
- .expand(
453
- bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
454
- )
455
- .reshape(bsz * seq_len, -1)
456
- ) # [n, e]
457
- tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
458
- topk_weight, topk_idx = torch.topk(
459
- tmp_scores, k=self.top_k, dim=-1, sorted=False
460
- )
461
-
462
- ### norm gate to sum 1
463
- if self.top_k > 1 and self.norm_topk_prob:
464
- denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
465
- topk_weight = topk_weight / denominator
466
- else:
467
- topk_weight = topk_weight * self.routed_scaling_factor
468
- ### expert-level computation auxiliary loss
469
- if self.training and self.alpha > 0.0:
470
- scores_for_aux = scores
471
- aux_topk = self.top_k
472
- # always compute aux loss based on the naive greedy topk method
473
- topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
474
- if self.seq_aux:
475
- scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
476
- ce = torch.zeros(
477
- bsz, self.n_routed_experts, device=hidden_states.device
478
- )
479
- ce.scatter_add_(
480
- 1,
481
- topk_idx_for_aux_loss,
482
- torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
483
- ).div_(seq_len * aux_topk / self.n_routed_experts)
484
- aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
485
- dim=1
486
- ).mean() * self.alpha
487
- else:
488
- mask_ce = F.one_hot(
489
- topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
490
- )
491
- ce = mask_ce.float().mean(0)
492
- Pi = scores_for_aux.mean(0)
493
- fi = ce * self.n_routed_experts
494
- aux_loss = (Pi * fi).sum() * self.alpha
495
- else:
496
- aux_loss = None
497
- return topk_idx, topk_weight, aux_loss
498
-
499
-
500
- class AddAuxiliaryLoss(torch.autograd.Function):
501
- """
502
- The trick function of adding auxiliary (aux) loss,
503
- which includes the gradient of the aux loss during backpropagation.
504
- """
505
-
506
- @staticmethod
507
- def forward(ctx, x, loss):
508
- assert loss.numel() == 1
509
- ctx.dtype = loss.dtype
510
- ctx.required_aux_loss = loss.requires_grad
511
- return x
512
-
513
- @staticmethod
514
- def backward(ctx, grad_output):
515
- grad_loss = None
516
- if ctx.required_aux_loss:
517
- grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
518
- return grad_output, grad_loss
519
-
520
-
521
- class DeepseekV2MoE(nn.Module):
522
- """
523
- A mixed expert module containing shared experts.
524
- """
525
-
526
- def __init__(self, config):
527
- super().__init__()
528
- self.config = config
529
- self.num_experts_per_tok = config.num_experts_per_tok
530
-
531
- if hasattr(config, "ep_size") and config.ep_size > 1:
532
- assert config.ep_size == dist.get_world_size()
533
- self.ep_size = config.ep_size
534
- self.experts_per_rank = config.n_routed_experts // config.ep_size
535
- self.ep_rank = dist.get_rank()
536
- self.experts = nn.ModuleList(
537
- [
538
- (
539
- DeepseekV2MLP(
540
- config, intermediate_size=config.moe_intermediate_size
541
- )
542
- if i >= self.ep_rank * self.experts_per_rank
543
- and i < (self.ep_rank + 1) * self.experts_per_rank
544
- else None
545
- )
546
- for i in range(config.n_routed_experts)
547
- ]
548
- )
549
- else:
550
- self.ep_size = 1
551
- self.experts_per_rank = config.n_routed_experts
552
- self.ep_rank = 0
553
- self.experts = nn.ModuleList(
554
- [
555
- DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)
556
- for i in range(config.n_routed_experts)
557
- ]
558
- )
559
- self.gate = MoEGate(config)
560
- if config.n_shared_experts is not None:
561
- intermediate_size = config.moe_intermediate_size * config.n_shared_experts
562
- self.shared_experts = DeepseekV2MLP(
563
- config=config, intermediate_size=intermediate_size
564
- )
565
-
566
- def forward(self, hidden_states):
567
- identity = hidden_states
568
- orig_shape = hidden_states.shape
569
- topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
570
- hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
571
- flat_topk_idx = topk_idx.view(-1)
572
- if self.training:
573
- hidden_states = hidden_states.repeat_interleave(
574
- self.num_experts_per_tok, dim=0
575
- )
576
- y = torch.empty_like(hidden_states)
577
- for i, expert in enumerate(self.experts):
578
- y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
579
- y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
580
- y = y.view(*orig_shape)
581
- y = AddAuxiliaryLoss.apply(y, aux_loss)
582
- else:
583
- y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
584
- if self.config.n_shared_experts is not None:
585
- y = y + self.shared_experts(identity)
586
- return y
587
-
588
- @torch.no_grad()
589
- def moe_infer(self, x, topk_ids, topk_weight):
590
- cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
591
- cnts.scatter_(1, topk_ids, 1)
592
- tokens_per_expert = cnts.sum(dim=0)
593
- idxs = topk_ids.view(-1).argsort()
594
- sorted_tokens = x[idxs // topk_ids.shape[1]]
595
- sorted_tokens_shape = sorted_tokens.shape
596
- if self.ep_size > 1:
597
- tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
598
- tokens_per_expert_group = tokens_per_expert.new_empty(
599
- tokens_per_expert.shape[0]
600
- )
601
- dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
602
- output_splits = (
603
- tokens_per_expert_group.view(self.ep_size, -1)
604
- .sum(1)
605
- .cpu()
606
- .numpy()
607
- .tolist()
608
- )
609
- gathered_tokens = sorted_tokens.new_empty(
610
- tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
611
- )
612
- input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
613
- dist.all_to_all(
614
- list(gathered_tokens.split(output_splits)),
615
- list(sorted_tokens.split(input_split_sizes)),
616
- )
617
- tokens_per_expert_post_gather = tokens_per_expert_group.view(
618
- self.ep_size, self.experts_per_rank
619
- ).sum(dim=0)
620
- gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
621
- s = 0
622
- for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
623
- gatherd_idxs[s : s + k] = i % self.experts_per_rank
624
- s += k
625
- gatherd_idxs = gatherd_idxs.argsort()
626
- sorted_tokens = gathered_tokens[gatherd_idxs]
627
- tokens_per_expert = tokens_per_expert_post_gather
628
- tokens_per_expert = tokens_per_expert.cpu().numpy()
629
-
630
- outputs = []
631
- start_idx = 0
632
- for i, num_tokens in enumerate(tokens_per_expert):
633
- end_idx = start_idx + num_tokens
634
- if num_tokens == 0:
635
- continue
636
- expert = self.experts[i + self.ep_rank * self.experts_per_rank]
637
- tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
638
- expert_out = expert(tokens_for_this_expert)
639
- outputs.append(expert_out)
640
- start_idx = end_idx
641
-
642
- outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
643
- if self.ep_size > 1:
644
- new_x = torch.empty_like(outs)
645
- new_x[gatherd_idxs] = outs
646
- gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
647
- dist.all_to_all(
648
- list(gathered_tokens.split(input_split_sizes)),
649
- list(new_x.split(output_splits)),
650
- )
651
- outs = gathered_tokens
652
-
653
- new_x = torch.empty_like(outs)
654
- new_x[idxs] = outs
655
- final_out = (
656
- new_x.view(*topk_ids.shape, -1)
657
- .type(topk_weight.dtype)
658
- .mul_(topk_weight.unsqueeze(dim=-1))
659
- .sum(dim=1)
660
- .type(new_x.dtype)
661
- )
662
- return final_out
663
-
664
-
665
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
666
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
667
- """
668
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
669
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
670
- """
671
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
672
- if n_rep == 1:
673
- return hidden_states
674
- hidden_states = hidden_states[:, :, None, :, :].expand(
675
- batch, num_key_value_heads, n_rep, slen, head_dim
676
- )
677
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
678
-
679
-
680
- # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
681
- class DeepseekV2Attention(nn.Module):
682
- """Multi-headed attention from 'Attention Is All You Need' paper"""
683
-
684
- def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
685
- super().__init__()
686
- self.config = config
687
- self.layer_idx = layer_idx
688
- if layer_idx is None:
689
- logger.warning_once(
690
- f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
691
- "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
692
- "when creating this class."
693
- )
694
-
695
- self.attention_dropout = config.attention_dropout
696
- self.hidden_size = config.hidden_size
697
- self.num_heads = config.num_attention_heads
698
-
699
- self.max_position_embeddings = config.max_position_embeddings
700
- self.rope_theta = config.rope_theta
701
- self.q_lora_rank = config.q_lora_rank
702
- self.qk_rope_head_dim = config.qk_rope_head_dim
703
- self.kv_lora_rank = config.kv_lora_rank
704
- self.v_head_dim = config.v_head_dim
705
- self.qk_nope_head_dim = config.qk_nope_head_dim
706
- self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
707
-
708
- self.is_causal = True
709
-
710
- if self.q_lora_rank is None:
711
- self.q_proj = nn.Linear(
712
- self.hidden_size, self.num_heads * self.q_head_dim, bias=False
713
- )
714
- else:
715
- self.q_a_proj = nn.Linear(
716
- self.hidden_size, config.q_lora_rank, bias=config.attention_bias
717
- )
718
- self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
719
- self.q_b_proj = nn.Linear(
720
- config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
721
- )
722
-
723
- self.kv_a_proj_with_mqa = nn.Linear(
724
- self.hidden_size,
725
- config.kv_lora_rank + config.qk_rope_head_dim,
726
- bias=config.attention_bias,
727
- )
728
- self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
729
- self.kv_b_proj = nn.Linear(
730
- config.kv_lora_rank,
731
- self.num_heads
732
- * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
733
- bias=False,
734
- )
735
-
736
- self.o_proj = nn.Linear(
737
- self.num_heads * self.v_head_dim,
738
- self.hidden_size,
739
- bias=config.attention_bias,
740
- )
741
- self._init_rope()
742
-
743
- self.softmax_scale = self.q_head_dim ** (-0.5)
744
- if self.config.rope_scaling is not None:
745
- mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
746
- scaling_factor = self.config.rope_scaling["factor"]
747
- if mscale_all_dim:
748
- mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
749
- self.softmax_scale = self.softmax_scale * mscale * mscale
750
-
751
- def _init_rope(self):
752
- if self.config.rope_scaling is None:
753
- self.rotary_emb = DeepseekV2RotaryEmbedding(
754
- self.qk_rope_head_dim,
755
- max_position_embeddings=self.max_position_embeddings,
756
- base=self.rope_theta,
757
- )
758
- else:
759
- scaling_type = self.config.rope_scaling["type"]
760
- scaling_factor = self.config.rope_scaling["factor"]
761
- if scaling_type == "linear":
762
- self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
763
- self.qk_rope_head_dim,
764
- max_position_embeddings=self.max_position_embeddings,
765
- scaling_factor=scaling_factor,
766
- base=self.rope_theta,
767
- )
768
- elif scaling_type == "dynamic":
769
- self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
770
- self.qk_rope_head_dim,
771
- max_position_embeddings=self.max_position_embeddings,
772
- scaling_factor=scaling_factor,
773
- base=self.rope_theta,
774
- )
775
- elif scaling_type == "yarn":
776
- kwargs = {
777
- key: self.config.rope_scaling[key]
778
- for key in [
779
- "original_max_position_embeddings",
780
- "beta_fast",
781
- "beta_slow",
782
- "mscale",
783
- "mscale_all_dim",
784
- ]
785
- if key in self.config.rope_scaling
786
- }
787
- self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
788
- self.qk_rope_head_dim,
789
- max_position_embeddings=self.max_position_embeddings,
790
- scaling_factor=scaling_factor,
791
- base=self.rope_theta,
792
- **kwargs,
793
- )
794
- else:
795
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
796
-
797
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
798
- return (
799
- tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
800
- .transpose(1, 2)
801
- .contiguous()
802
- )
803
-
804
- def forward(
805
- self,
806
- hidden_states: torch.Tensor,
807
- attention_mask: Optional[torch.Tensor] = None,
808
- position_ids: Optional[torch.LongTensor] = None,
809
- past_key_value: Optional[Cache] = None,
810
- output_attentions: bool = False,
811
- use_cache: bool = False,
812
- **kwargs,
813
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
814
- if "padding_mask" in kwargs:
815
- warnings.warn(
816
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
817
- )
818
- bsz, q_len, _ = hidden_states.size()
819
-
820
- if self.q_lora_rank is None:
821
- q = self.q_proj(hidden_states)
822
- else:
823
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
824
- q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
825
- q_nope, q_pe = torch.split(
826
- q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
827
- )
828
-
829
- compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
830
- compressed_kv, k_pe = torch.split(
831
- compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
832
- )
833
- k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
834
- kv = (
835
- self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
836
- .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
837
- .transpose(1, 2)
838
- )
839
-
840
- k_nope, value_states = torch.split(
841
- kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
842
- )
843
- kv_seq_len = value_states.shape[-2]
844
- if past_key_value is not None:
845
- if self.layer_idx is None:
846
- raise ValueError(
847
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
848
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
849
- "with a layer index."
850
- )
851
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
852
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
853
-
854
- q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
855
-
856
- query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
857
- query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
858
- query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
859
-
860
- key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
861
- key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
862
- key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
863
- if past_key_value is not None:
864
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
865
- key_states, value_states = past_key_value.update(
866
- key_states, value_states, self.layer_idx, cache_kwargs
867
- )
868
-
869
- attn_weights = (
870
- torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
871
- )
872
-
873
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
874
- raise ValueError(
875
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
876
- f" {attn_weights.size()}"
877
- )
878
- assert attention_mask is not None
879
- if attention_mask is not None:
880
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
881
- raise ValueError(
882
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
883
- )
884
- attn_weights = attn_weights + attention_mask
885
-
886
- # upcast attention to fp32
887
- attn_weights = nn.functional.softmax(
888
- attn_weights, dim=-1, dtype=torch.float32
889
- ).to(query_states.dtype)
890
- attn_weights = nn.functional.dropout(
891
- attn_weights, p=self.attention_dropout, training=self.training
892
- )
893
- attn_output = torch.matmul(attn_weights, value_states)
894
-
895
- if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
896
- raise ValueError(
897
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
898
- f" {attn_output.size()}"
899
- )
900
-
901
- attn_output = attn_output.transpose(1, 2).contiguous()
902
-
903
- attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
904
-
905
- attn_output = self.o_proj(attn_output)
906
-
907
- if not output_attentions:
908
- attn_weights = None
909
-
910
- return attn_output, attn_weights, past_key_value
911
-
912
-
913
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
914
- class DeepseekV2FlashAttention2(DeepseekV2Attention):
915
- """
916
- DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
917
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
918
- flash attention and deal with padding tokens in case the input contains any of them.
919
- """
920
-
921
- def __init__(self, *args, **kwargs):
922
- super().__init__(*args, **kwargs)
923
-
924
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
925
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
926
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
927
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
928
-
929
- def forward(
930
- self,
931
- hidden_states: torch.Tensor,
932
- attention_mask: Optional[torch.LongTensor] = None,
933
- position_ids: Optional[torch.LongTensor] = None,
934
- past_key_value: Optional[Cache] = None,
935
- output_attentions: bool = False,
936
- use_cache: bool = False,
937
- **kwargs,
938
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
939
- # DeepseekV2FlashAttention2 attention does not support output_attentions
940
- if "padding_mask" in kwargs:
941
- warnings.warn(
942
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
943
- )
944
-
945
- # overwrite attention_mask with padding_mask
946
- attention_mask = kwargs.pop("padding_mask")
947
-
948
- output_attentions = False
949
-
950
- bsz, q_len, _ = hidden_states.size()
951
-
952
- if self.q_lora_rank is None:
953
- q = self.q_proj(hidden_states)
954
- else:
955
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
956
- q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
957
- q_nope, q_pe = torch.split(
958
- q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
959
- )
960
-
961
- # Flash attention requires the input to have the shape
962
- # batch_size x seq_length x head_dim x hidden_dim
963
- # therefore we just need to keep the original shape
964
- compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
965
- compressed_kv, k_pe = torch.split(
966
- compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
967
- )
968
- k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
969
- kv = (
970
- self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
971
- .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
972
- .transpose(1, 2)
973
- )
974
-
975
- k_nope, value_states = torch.split(
976
- kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
977
- )
978
- kv_seq_len = value_states.shape[-2]
979
-
980
- kv_seq_len = value_states.shape[-2]
981
- if past_key_value is not None:
982
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
983
-
984
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
985
- q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
986
-
987
- query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
988
- query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
989
- query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
990
-
991
- key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
992
- key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
993
- key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
994
-
995
- if self.q_head_dim != self.v_head_dim:
996
- value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
997
-
998
- if past_key_value is not None:
999
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1000
- key_states, value_states = past_key_value.update(
1001
- key_states, value_states, self.layer_idx, cache_kwargs
1002
- )
1003
-
1004
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1005
- # to be able to avoid many of these transpose/reshape/view.
1006
- query_states = query_states.transpose(1, 2)
1007
- key_states = key_states.transpose(1, 2)
1008
- value_states = value_states.transpose(1, 2)
1009
-
1010
- dropout_rate = self.attention_dropout if self.training else 0.0
1011
-
1012
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1013
- # therefore the input hidden states gets silently casted in float32. Hence, we need
1014
- # cast them back in the correct dtype just to be sure everything works as expected.
1015
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1016
- # in fp32. (DeepseekV2RMSNorm handles it correctly)
1017
-
1018
- input_dtype = query_states.dtype
1019
- if input_dtype == torch.float32:
1020
- # Handle the case where the model is quantized
1021
- if hasattr(self.config, "_pre_quantization_dtype"):
1022
- target_dtype = self.config._pre_quantization_dtype
1023
- elif torch.is_autocast_enabled():
1024
- target_dtype = torch.get_autocast_gpu_dtype()
1025
- else:
1026
- target_dtype = self.q_proj.weight.dtype if self.q_lora_rank is None else self.q_a_proj.weight.dtype
1027
-
1028
- logger.warning_once(
1029
- f"The input hidden states seems to be silently casted in float32, this might be related to"
1030
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1031
- f" {target_dtype}."
1032
- )
1033
-
1034
- query_states = query_states.to(target_dtype)
1035
- key_states = key_states.to(target_dtype)
1036
- value_states = value_states.to(target_dtype)
1037
-
1038
- attn_output = self._flash_attention_forward(
1039
- query_states,
1040
- key_states,
1041
- value_states,
1042
- attention_mask,
1043
- q_len,
1044
- dropout=dropout_rate,
1045
- softmax_scale=self.softmax_scale,
1046
- )
1047
- if self.q_head_dim != self.v_head_dim:
1048
- attn_output = attn_output[:, :, :, : self.v_head_dim]
1049
-
1050
- attn_output = attn_output.reshape(
1051
- bsz, q_len, self.num_heads * self.v_head_dim
1052
- ).contiguous()
1053
- attn_output = self.o_proj(attn_output)
1054
-
1055
- if not output_attentions:
1056
- attn_weights = None
1057
-
1058
- return attn_output, attn_weights, past_key_value
1059
-
1060
- def _flash_attention_forward(
1061
- self,
1062
- query_states,
1063
- key_states,
1064
- value_states,
1065
- attention_mask,
1066
- query_length,
1067
- dropout=0.0,
1068
- softmax_scale=None,
1069
- ):
1070
- """
1071
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1072
- first unpad the input, then computes the attention scores and pad the final attention scores.
1073
-
1074
- Args:
1075
- query_states (`torch.Tensor`):
1076
- Input query states to be passed to Flash Attention API
1077
- key_states (`torch.Tensor`):
1078
- Input key states to be passed to Flash Attention API
1079
- value_states (`torch.Tensor`):
1080
- Input value states to be passed to Flash Attention API
1081
- attention_mask (`torch.Tensor`):
1082
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1083
- position of padding tokens and 1 for the position of non-padding tokens.
1084
- dropout (`int`, *optional*):
1085
- Attention dropout
1086
- softmax_scale (`float`, *optional*):
1087
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1088
- """
1089
- if not self._flash_attn_uses_top_left_mask:
1090
- causal = self.is_causal
1091
- else:
1092
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1093
- causal = self.is_causal and query_length != 1
1094
-
1095
- # Contains at least one padding token in the sequence
1096
- if attention_mask is not None:
1097
- batch_size = query_states.shape[0]
1098
- (
1099
- query_states,
1100
- key_states,
1101
- value_states,
1102
- indices_q,
1103
- cu_seq_lens,
1104
- max_seq_lens,
1105
- ) = self._upad_input(
1106
- query_states, key_states, value_states, attention_mask, query_length
1107
- )
1108
-
1109
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1110
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1111
-
1112
- attn_output_unpad = flash_attn_varlen_func(
1113
- query_states,
1114
- key_states,
1115
- value_states,
1116
- cu_seqlens_q=cu_seqlens_q,
1117
- cu_seqlens_k=cu_seqlens_k,
1118
- max_seqlen_q=max_seqlen_in_batch_q,
1119
- max_seqlen_k=max_seqlen_in_batch_k,
1120
- dropout_p=dropout,
1121
- softmax_scale=softmax_scale,
1122
- causal=causal,
1123
- )
1124
-
1125
- attn_output = pad_input(
1126
- attn_output_unpad, indices_q, batch_size, query_length
1127
- )
1128
- else:
1129
- attn_output = flash_attn_func(
1130
- query_states,
1131
- key_states,
1132
- value_states,
1133
- dropout,
1134
- softmax_scale=softmax_scale,
1135
- causal=causal,
1136
- )
1137
-
1138
- return attn_output
1139
-
1140
- def _upad_input(
1141
- self, query_layer, key_layer, value_layer, attention_mask, query_length
1142
- ):
1143
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1144
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1145
-
1146
- key_layer = index_first_axis(
1147
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1148
- indices_k,
1149
- )
1150
- value_layer = index_first_axis(
1151
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1152
- indices_k,
1153
- )
1154
- if query_length == kv_seq_len:
1155
- query_layer = index_first_axis(
1156
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1157
- indices_k,
1158
- )
1159
- cu_seqlens_q = cu_seqlens_k
1160
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
1161
- indices_q = indices_k
1162
- elif query_length == 1:
1163
- max_seqlen_in_batch_q = 1
1164
- cu_seqlens_q = torch.arange(
1165
- batch_size + 1, dtype=torch.int32, device=query_layer.device
1166
- ) # There is a memcpy here, that is very bad.
1167
- indices_q = cu_seqlens_q[:-1]
1168
- query_layer = query_layer.squeeze(1)
1169
- else:
1170
- # The -q_len: slice assumes left padding.
1171
- attention_mask = attention_mask[:, -query_length:]
1172
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1173
- query_layer, attention_mask
1174
- )
1175
-
1176
- return (
1177
- query_layer,
1178
- key_layer,
1179
- value_layer,
1180
- indices_q,
1181
- (cu_seqlens_q, cu_seqlens_k),
1182
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1183
- )
1184
-
1185
-
1186
- ATTENTION_CLASSES = {
1187
- "eager": DeepseekV2Attention,
1188
- "flash_attention_2": DeepseekV2FlashAttention2,
1189
- }
1190
-
1191
-
1192
- class DeepseekV2DecoderLayer(nn.Module):
1193
- def __init__(self, config: DeepseekV2Config, layer_idx: int):
1194
- super().__init__()
1195
- self.hidden_size = config.hidden_size
1196
-
1197
- self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1198
- config=config, layer_idx=layer_idx
1199
- )
1200
-
1201
- self.mlp = (
1202
- DeepseekV2MoE(config)
1203
- if (
1204
- config.n_routed_experts is not None
1205
- and layer_idx >= config.first_k_dense_replace
1206
- and layer_idx % config.moe_layer_freq == 0
1207
- )
1208
- else DeepseekV2MLP(config)
1209
- )
1210
- self.input_layernorm = DeepseekV2RMSNorm(
1211
- config.hidden_size, eps=config.rms_norm_eps
1212
- )
1213
- self.post_attention_layernorm = DeepseekV2RMSNorm(
1214
- config.hidden_size, eps=config.rms_norm_eps
1215
- )
1216
-
1217
- def forward(
1218
- self,
1219
- hidden_states: torch.Tensor,
1220
- attention_mask: Optional[torch.Tensor] = None,
1221
- position_ids: Optional[torch.LongTensor] = None,
1222
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
1223
- output_attentions: Optional[bool] = False,
1224
- use_cache: Optional[bool] = False,
1225
- **kwargs,
1226
- ) -> Tuple[
1227
- torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1228
- ]:
1229
- """
1230
- Args:
1231
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1232
- attention_mask (`torch.FloatTensor`, *optional*):
1233
- attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1234
- query_sequence_length, key_sequence_length)` if default attention is used.
1235
- output_attentions (`bool`, *optional*):
1236
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1237
- returned tensors for more detail.
1238
- use_cache (`bool`, *optional*):
1239
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1240
- (see `past_key_values`).
1241
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1242
- """
1243
- if "padding_mask" in kwargs:
1244
- warnings.warn(
1245
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1246
- )
1247
- residual = hidden_states
1248
-
1249
- hidden_states = self.input_layernorm(hidden_states)
1250
-
1251
- # Self Attention
1252
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
1253
- hidden_states=hidden_states,
1254
- attention_mask=attention_mask,
1255
- position_ids=position_ids,
1256
- past_key_value=past_key_value,
1257
- output_attentions=output_attentions,
1258
- use_cache=use_cache,
1259
- **kwargs,
1260
- )
1261
- hidden_states = residual + hidden_states
1262
-
1263
- # Fully Connected
1264
- residual = hidden_states
1265
- hidden_states = self.post_attention_layernorm(hidden_states)
1266
- hidden_states = self.mlp(hidden_states)
1267
- hidden_states = residual + hidden_states
1268
-
1269
- outputs = (hidden_states,)
1270
-
1271
- if output_attentions:
1272
- outputs += (self_attn_weights,)
1273
-
1274
- if use_cache:
1275
- outputs += (present_key_value,)
1276
-
1277
- return outputs
1278
-
1279
-
1280
- DeepseekV2_START_DOCSTRING = r"""
1281
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1282
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1283
- etc.)
1284
-
1285
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1286
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1287
- and behavior.
1288
-
1289
- Parameters:
1290
- config ([`DeepseekV2Config`]):
1291
- Model configuration class with all the parameters of the model. Initializing with a config file does not
1292
- load the weights associated with the model, only the configuration. Check out the
1293
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1294
- """
1295
-
1296
-
1297
- @add_start_docstrings(
1298
- "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1299
- DeepseekV2_START_DOCSTRING,
1300
- )
1301
- class DeepseekV2PreTrainedModel(PreTrainedModel):
1302
- config_class = DeepseekV2Config
1303
- base_model_prefix = "model"
1304
- supports_gradient_checkpointing = True
1305
- _no_split_modules = ["DeepseekV2DecoderLayer"]
1306
- _skip_keys_device_placement = "past_key_values"
1307
- _supports_flash_attn_2 = True
1308
- _supports_cache_class = True
1309
-
1310
- def _init_weights(self, module):
1311
- std = self.config.initializer_range
1312
- if isinstance(module, nn.Linear):
1313
- module.weight.data.normal_(mean=0.0, std=std)
1314
- if module.bias is not None:
1315
- module.bias.data.zero_()
1316
- elif isinstance(module, nn.Embedding):
1317
- module.weight.data.normal_(mean=0.0, std=std)
1318
- if module.padding_idx is not None:
1319
- module.weight.data[module.padding_idx].zero_()
1320
-
1321
-
1322
- DeepseekV2_INPUTS_DOCSTRING = r"""
1323
- Args:
1324
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1325
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1326
- it.
1327
-
1328
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1329
- [`PreTrainedTokenizer.__call__`] for details.
1330
-
1331
- [What are input IDs?](../glossary#input-ids)
1332
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1333
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1334
-
1335
- - 1 for tokens that are **not masked**,
1336
- - 0 for tokens that are **masked**.
1337
-
1338
- [What are attention masks?](../glossary#attention-mask)
1339
-
1340
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1341
- [`PreTrainedTokenizer.__call__`] for details.
1342
-
1343
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1344
- `past_key_values`).
1345
-
1346
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1347
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1348
- information on the default strategy.
1349
-
1350
- - 1 indicates the head is **not masked**,
1351
- - 0 indicates the head is **masked**.
1352
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1353
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1354
- config.n_positions - 1]`.
1355
-
1356
- [What are position IDs?](../glossary#position-ids)
1357
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1358
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1359
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1360
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1361
-
1362
- Two formats are allowed:
1363
- - a [`~cache_utils.Cache`] instance;
1364
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1365
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1366
- cache format.
1367
-
1368
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1369
- legacy cache format will be returned.
1370
-
1371
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1372
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1373
- of shape `(batch_size, sequence_length)`.
1374
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1375
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1376
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1377
- model's internal embedding lookup matrix.
1378
- use_cache (`bool`, *optional*):
1379
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1380
- `past_key_values`).
1381
- output_attentions (`bool`, *optional*):
1382
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1383
- tensors for more detail.
1384
- output_hidden_states (`bool`, *optional*):
1385
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1386
- more detail.
1387
- return_dict (`bool`, *optional*):
1388
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1389
- """
1390
-
1391
-
1392
- @add_start_docstrings(
1393
- "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1394
- DeepseekV2_START_DOCSTRING,
1395
- )
1396
- class DeepseekV2Model(DeepseekV2PreTrainedModel):
1397
- """
1398
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1399
-
1400
- Args:
1401
- config: DeepseekV2Config
1402
- """
1403
-
1404
- def __init__(self, config: DeepseekV2Config):
1405
- super().__init__(config)
1406
- self.padding_idx = config.pad_token_id
1407
- self.vocab_size = config.vocab_size
1408
-
1409
- self.embed_tokens = nn.Embedding(
1410
- config.vocab_size, config.hidden_size, self.padding_idx
1411
- )
1412
- self.layers = nn.ModuleList(
1413
- [
1414
- DeepseekV2DecoderLayer(config, layer_idx)
1415
- for layer_idx in range(config.num_hidden_layers)
1416
- ]
1417
- )
1418
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1419
- self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1420
-
1421
- self.gradient_checkpointing = False
1422
- # Initialize weights and apply final processing
1423
- self.post_init()
1424
-
1425
- def get_input_embeddings(self):
1426
- return self.embed_tokens
1427
-
1428
- def set_input_embeddings(self, value):
1429
- self.embed_tokens = value
1430
-
1431
- @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1432
- def forward(
1433
- self,
1434
- input_ids: torch.LongTensor = None,
1435
- attention_mask: Optional[torch.Tensor] = None,
1436
- position_ids: Optional[torch.LongTensor] = None,
1437
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1438
- inputs_embeds: Optional[torch.FloatTensor] = None,
1439
- use_cache: Optional[bool] = None,
1440
- output_attentions: Optional[bool] = None,
1441
- output_hidden_states: Optional[bool] = None,
1442
- return_dict: Optional[bool] = None,
1443
- ) -> Union[Tuple, BaseModelOutputWithPast]:
1444
- output_attentions = (
1445
- output_attentions
1446
- if output_attentions is not None
1447
- else self.config.output_attentions
1448
- )
1449
- output_hidden_states = (
1450
- output_hidden_states
1451
- if output_hidden_states is not None
1452
- else self.config.output_hidden_states
1453
- )
1454
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1455
-
1456
- return_dict = (
1457
- return_dict if return_dict is not None else self.config.use_return_dict
1458
- )
1459
-
1460
- # retrieve input_ids and inputs_embeds
1461
- if input_ids is not None and inputs_embeds is not None:
1462
- raise ValueError(
1463
- "You cannot specify both input_ids and inputs_embeds at the same time"
1464
- )
1465
- elif input_ids is not None:
1466
- batch_size, seq_length = input_ids.shape[:2]
1467
- elif inputs_embeds is not None:
1468
- batch_size, seq_length = inputs_embeds.shape[:2]
1469
- else:
1470
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1471
-
1472
- if self.gradient_checkpointing and self.training:
1473
- if use_cache:
1474
- logger.warning_once(
1475
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1476
- )
1477
- use_cache = False
1478
-
1479
- past_key_values_length = 0
1480
- if use_cache:
1481
- use_legacy_cache = not isinstance(past_key_values, Cache)
1482
- if use_legacy_cache:
1483
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1484
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1485
-
1486
- if position_ids is None:
1487
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1488
- position_ids = torch.arange(
1489
- past_key_values_length,
1490
- seq_length + past_key_values_length,
1491
- dtype=torch.long,
1492
- device=device,
1493
- )
1494
- position_ids = position_ids.unsqueeze(0)
1495
-
1496
- if inputs_embeds is None:
1497
- inputs_embeds = self.embed_tokens(input_ids)
1498
-
1499
- if self._use_flash_attention_2:
1500
- # 2d mask is passed through the layers
1501
- attention_mask = (
1502
- attention_mask
1503
- if (attention_mask is not None and 0 in attention_mask)
1504
- else None
1505
- )
1506
- else:
1507
- # 4d mask is passed through the layers
1508
- attention_mask = _prepare_4d_causal_attention_mask(
1509
- attention_mask,
1510
- (batch_size, seq_length),
1511
- inputs_embeds,
1512
- past_key_values_length,
1513
- )
1514
-
1515
- # embed positions
1516
- hidden_states = inputs_embeds
1517
-
1518
- # decoder layers
1519
- all_hidden_states = () if output_hidden_states else None
1520
- all_self_attns = () if output_attentions else None
1521
- next_decoder_cache = None
1522
-
1523
- for decoder_layer in self.layers:
1524
- if output_hidden_states:
1525
- all_hidden_states += (hidden_states,)
1526
-
1527
- if self.gradient_checkpointing and self.training:
1528
- layer_outputs = self._gradient_checkpointing_func(
1529
- decoder_layer.__call__,
1530
- hidden_states,
1531
- attention_mask,
1532
- position_ids,
1533
- past_key_values,
1534
- output_attentions,
1535
- use_cache,
1536
- )
1537
- else:
1538
- layer_outputs = decoder_layer(
1539
- hidden_states,
1540
- attention_mask=attention_mask,
1541
- position_ids=position_ids,
1542
- past_key_value=past_key_values,
1543
- output_attentions=output_attentions,
1544
- use_cache=use_cache,
1545
- )
1546
-
1547
- hidden_states = layer_outputs[0]
1548
-
1549
- if use_cache:
1550
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1551
-
1552
- if output_attentions:
1553
- all_self_attns += (layer_outputs[1],)
1554
-
1555
- hidden_states = self.norm(hidden_states)
1556
-
1557
- # add hidden states from the last decoder layer
1558
- if output_hidden_states:
1559
- all_hidden_states += (hidden_states,)
1560
-
1561
- next_cache = None
1562
- if use_cache:
1563
- next_cache = (
1564
- next_decoder_cache.to_legacy_cache()
1565
- if use_legacy_cache
1566
- else next_decoder_cache
1567
- )
1568
- if not return_dict:
1569
- return tuple(
1570
- v
1571
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1572
- if v is not None
1573
- )
1574
- return BaseModelOutputWithPast(
1575
- last_hidden_state=hidden_states,
1576
- past_key_values=next_cache,
1577
- hidden_states=all_hidden_states,
1578
- attentions=all_self_attns,
1579
- )
1580
-
1581
-
1582
- class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1583
- _tied_weights_keys = ["lm_head.weight"]
1584
-
1585
- def __init__(self, config):
1586
- super().__init__(config)
1587
- self.model = DeepseekV2Model(config)
1588
- self.vocab_size = config.vocab_size
1589
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1590
-
1591
- # Initialize weights and apply final processing
1592
- self.post_init()
1593
-
1594
- def get_input_embeddings(self):
1595
- return self.model.embed_tokens
1596
-
1597
- def set_input_embeddings(self, value):
1598
- self.model.embed_tokens = value
1599
-
1600
- def get_output_embeddings(self):
1601
- return self.lm_head
1602
-
1603
- def set_output_embeddings(self, new_embeddings):
1604
- self.lm_head = new_embeddings
1605
-
1606
- def set_decoder(self, decoder):
1607
- self.model = decoder
1608
-
1609
- def get_decoder(self):
1610
- return self.model
1611
-
1612
- @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1613
- @replace_return_docstrings(
1614
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1615
- )
1616
- def forward(
1617
- self,
1618
- input_ids: torch.LongTensor = None,
1619
- attention_mask: Optional[torch.Tensor] = None,
1620
- position_ids: Optional[torch.LongTensor] = None,
1621
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1622
- inputs_embeds: Optional[torch.FloatTensor] = None,
1623
- labels: Optional[torch.LongTensor] = None,
1624
- use_cache: Optional[bool] = None,
1625
- output_attentions: Optional[bool] = None,
1626
- output_hidden_states: Optional[bool] = None,
1627
- return_dict: Optional[bool] = None,
1628
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1629
- r"""
1630
- Args:
1631
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1632
- Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1633
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1634
- (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1635
-
1636
- Returns:
1637
-
1638
- Example:
1639
-
1640
- ```python
1641
- >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1642
-
1643
- >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1644
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1645
-
1646
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1647
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1648
-
1649
- >>> # Generate
1650
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1651
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1652
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1653
- ```"""
1654
- output_attentions = (
1655
- output_attentions
1656
- if output_attentions is not None
1657
- else self.config.output_attentions
1658
- )
1659
- output_hidden_states = (
1660
- output_hidden_states
1661
- if output_hidden_states is not None
1662
- else self.config.output_hidden_states
1663
- )
1664
- return_dict = (
1665
- return_dict if return_dict is not None else self.config.use_return_dict
1666
- )
1667
-
1668
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1669
- outputs = self.model(
1670
- input_ids=input_ids,
1671
- attention_mask=attention_mask,
1672
- position_ids=position_ids,
1673
- past_key_values=past_key_values,
1674
- inputs_embeds=inputs_embeds,
1675
- use_cache=use_cache,
1676
- output_attentions=output_attentions,
1677
- output_hidden_states=output_hidden_states,
1678
- return_dict=return_dict,
1679
- )
1680
-
1681
- hidden_states = outputs[0]
1682
- logits = self.lm_head(hidden_states)
1683
- logits = logits.float()
1684
-
1685
- loss = None
1686
- if labels is not None:
1687
- # Shift so that tokens < n predict n
1688
- shift_logits = logits[..., :-1, :].contiguous()
1689
- shift_labels = labels[..., 1:].contiguous()
1690
- # Flatten the tokens
1691
- loss_fct = CrossEntropyLoss()
1692
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1693
- shift_labels = shift_labels.view(-1)
1694
- # Enable model parallelism
1695
- shift_labels = shift_labels.to(shift_logits.device)
1696
- loss = loss_fct(shift_logits, shift_labels)
1697
-
1698
- if not return_dict:
1699
- output = (logits,) + outputs[1:]
1700
- return (loss,) + output if loss is not None else output
1701
-
1702
- return CausalLMOutputWithPast(
1703
- loss=loss,
1704
- logits=logits,
1705
- past_key_values=outputs.past_key_values,
1706
- hidden_states=outputs.hidden_states,
1707
- attentions=outputs.attentions,
1708
- )
1709
-
1710
- def prepare_inputs_for_generation(
1711
- self,
1712
- input_ids,
1713
- past_key_values=None,
1714
- attention_mask=None,
1715
- inputs_embeds=None,
1716
- **kwargs,
1717
- ):
1718
- if past_key_values is not None:
1719
- if isinstance(past_key_values, Cache):
1720
- cache_length = past_key_values.get_seq_length()
1721
- past_length = past_key_values.seen_tokens
1722
- max_cache_length = past_key_values.get_max_length()
1723
- else:
1724
- cache_length = past_length = past_key_values[0][0].shape[2]
1725
- max_cache_length = None
1726
-
1727
- # Keep only the unprocessed tokens:
1728
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1729
- # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1730
- # input)
1731
- if (
1732
- attention_mask is not None
1733
- and attention_mask.shape[1] > input_ids.shape[1]
1734
- ):
1735
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1736
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1737
- # input_ids based on the past_length.
1738
- elif past_length < input_ids.shape[1]:
1739
- input_ids = input_ids[:, past_length:]
1740
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1741
-
1742
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1743
- if (
1744
- max_cache_length is not None
1745
- and attention_mask is not None
1746
- and cache_length + input_ids.shape[1] > max_cache_length
1747
- ):
1748
- attention_mask = attention_mask[:, -max_cache_length:]
1749
-
1750
- position_ids = kwargs.get("position_ids", None)
1751
- if attention_mask is not None and position_ids is None:
1752
- # create position_ids on the fly for batch generation
1753
- position_ids = attention_mask.long().cumsum(-1) - 1
1754
- position_ids.masked_fill_(attention_mask == 0, 1)
1755
- if past_key_values:
1756
- position_ids = position_ids[:, -input_ids.shape[1] :]
1757
-
1758
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1759
- if inputs_embeds is not None and past_key_values is None:
1760
- model_inputs = {"inputs_embeds": inputs_embeds}
1761
- else:
1762
- model_inputs = {"input_ids": input_ids}
1763
-
1764
- model_inputs.update(
1765
- {
1766
- "position_ids": position_ids,
1767
- "past_key_values": past_key_values,
1768
- "use_cache": kwargs.get("use_cache"),
1769
- "attention_mask": attention_mask,
1770
- }
1771
- )
1772
- return model_inputs
1773
-
1774
- @staticmethod
1775
- def _reorder_cache(past_key_values, beam_idx):
1776
- reordered_past = ()
1777
- for layer_past in past_key_values:
1778
- reordered_past += (
1779
- tuple(
1780
- past_state.index_select(0, beam_idx.to(past_state.device))
1781
- for past_state in layer_past
1782
- ),
1783
- )
1784
- return reordered_past
1785
-
1786
-
1787
- @add_start_docstrings(
1788
- """
1789
- The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1790
-
1791
- [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1792
- (e.g. GPT-2) do.
1793
-
1794
- Since it does classification on the last token, it requires to know the position of the last token. If a
1795
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1796
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1797
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1798
- each row of the batch).
1799
- """,
1800
- DeepseekV2_START_DOCSTRING,
1801
- )
1802
- class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1803
- def __init__(self, config):
1804
- super().__init__(config)
1805
- self.num_labels = config.num_labels
1806
- self.model = DeepseekV2Model(config)
1807
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1808
-
1809
- # Initialize weights and apply final processing
1810
- self.post_init()
1811
-
1812
- def get_input_embeddings(self):
1813
- return self.model.embed_tokens
1814
-
1815
- def set_input_embeddings(self, value):
1816
- self.model.embed_tokens = value
1817
-
1818
- @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1819
- def forward(
1820
- self,
1821
- input_ids: torch.LongTensor = None,
1822
- attention_mask: Optional[torch.Tensor] = None,
1823
- position_ids: Optional[torch.LongTensor] = None,
1824
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1825
- inputs_embeds: Optional[torch.FloatTensor] = None,
1826
- labels: Optional[torch.LongTensor] = None,
1827
- use_cache: Optional[bool] = None,
1828
- output_attentions: Optional[bool] = None,
1829
- output_hidden_states: Optional[bool] = None,
1830
- return_dict: Optional[bool] = None,
1831
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1832
- r"""
1833
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1834
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1835
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1836
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1837
- """
1838
- return_dict = (
1839
- return_dict if return_dict is not None else self.config.use_return_dict
1840
- )
1841
-
1842
- transformer_outputs = self.model(
1843
- input_ids,
1844
- attention_mask=attention_mask,
1845
- position_ids=position_ids,
1846
- past_key_values=past_key_values,
1847
- inputs_embeds=inputs_embeds,
1848
- use_cache=use_cache,
1849
- output_attentions=output_attentions,
1850
- output_hidden_states=output_hidden_states,
1851
- return_dict=return_dict,
1852
- )
1853
- hidden_states = transformer_outputs[0]
1854
- logits = self.score(hidden_states)
1855
-
1856
- if input_ids is not None:
1857
- batch_size = input_ids.shape[0]
1858
- else:
1859
- batch_size = inputs_embeds.shape[0]
1860
-
1861
- if self.config.pad_token_id is None and batch_size != 1:
1862
- raise ValueError(
1863
- "Cannot handle batch sizes > 1 if no padding token is defined."
1864
- )
1865
- if self.config.pad_token_id is None:
1866
- sequence_lengths = -1
1867
- else:
1868
- if input_ids is not None:
1869
- sequence_lengths = (
1870
- torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1871
- ).to(logits.device)
1872
- else:
1873
- sequence_lengths = -1
1874
-
1875
- pooled_logits = logits[
1876
- torch.arange(batch_size, device=logits.device), sequence_lengths
1877
- ]
1878
-
1879
- loss = None
1880
- if labels is not None:
1881
- labels = labels.to(logits.device)
1882
- if self.config.problem_type is None:
1883
- if self.num_labels == 1:
1884
- self.config.problem_type = "regression"
1885
- elif self.num_labels > 1 and (
1886
- labels.dtype == torch.long or labels.dtype == torch.int
1887
- ):
1888
- self.config.problem_type = "single_label_classification"
1889
- else:
1890
- self.config.problem_type = "multi_label_classification"
1891
-
1892
- if self.config.problem_type == "regression":
1893
- loss_fct = MSELoss()
1894
- if self.num_labels == 1:
1895
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1896
- else:
1897
- loss = loss_fct(pooled_logits, labels)
1898
- elif self.config.problem_type == "single_label_classification":
1899
- loss_fct = CrossEntropyLoss()
1900
- loss = loss_fct(
1901
- pooled_logits.view(-1, self.num_labels), labels.view(-1)
1902
- )
1903
- elif self.config.problem_type == "multi_label_classification":
1904
- loss_fct = BCEWithLogitsLoss()
1905
- loss = loss_fct(pooled_logits, labels)
1906
- if not return_dict:
1907
- output = (pooled_logits,) + transformer_outputs[1:]
1908
- return ((loss,) + output) if loss is not None else output
1909
-
1910
- return SequenceClassifierOutputWithPast(
1911
- loss=loss,
1912
- logits=pooled_logits,
1913
- past_key_values=transformer_outputs.past_key_values,
1914
- hidden_states=transformer_outputs.hidden_states,
1915
- attentions=transformer_outputs.attentions,
1916
- )