File size: 2,611 Bytes
0d30833
 
 
 
 
 
 
a1cc855
0d30833
a1cc855
0d30833
 
 
 
 
 
 
a1cc855
0d30833
 
 
3b6dfce
0d30833
a1cc855
90419e3
0d30833
 
 
 
a1cc855
0d30833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90419e3
0d30833
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: other
license_name: deepseek
license_link: LICENSE
---

<p align="center">
<img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true">
</p>
<p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a>  |  <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a>  |  <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a>  |  <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p>
<hr>




### 1. Introduction of Deepseek LLM

Introducing DeepSeek LLM, an advanced language model comprising 7 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community.

  
### 2. Model Summary
`deepseek-llm-7b-base` is a 7B parameter model with Multi-Head Attention trained on 2 trillion tokens from scratch.
- **Home Page:** [DeepSeek](https://deepseek.com/)
- **Repository:** [deepseek-ai/deepseek-LLM](https://github.com/deepseek-ai/deepseek-LLM)
- **Chat With DeepSeek LLM:** [DeepSeek-LLM](https://chat.deepseek.com/)


### 3. How to Use
Here give some examples of how to use our model.
#### Text Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/deepseek-llm-7b-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```

### 4. License
This code repository is licensed under the MIT License. The use of DeepSeek LLM models is subject to the Model License. DeepSeek LLM supports commercial use.

See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-LLM/blob/main/LICENSE-MODEL) for more details.

### 5. Contact

If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).