File size: 8,676 Bytes
c8b512d
 
 
5bcc058
 
 
ba6be5b
 
79aed54
5bcc058
 
 
 
 
 
 
 
 
 
 
 
ba6be5b
5bcc058
ba6be5b
5bcc058
ba6be5b
 
5bcc058
ba6be5b
5bcc058
ba6be5b
09fb13f
 
 
 
 
 
 
 
 
ba6be5b
09fb13f
ba6be5b
09fb13f
ba6be5b
 
09fb13f
ba6be5b
09fb13f
ba6be5b
79aed54
 
 
 
 
 
 
 
 
 
ec78f8d
79aed54
 
ec78f8d
79aed54
 
 
 
 
 
 
 
 
 
 
ec78f8d
79aed54
 
ec78f8d
79aed54
 
 
 
 
 
 
 
 
 
 
ec78f8d
79aed54
 
ec78f8d
79aed54
 
 
 
 
 
 
 
 
 
 
ec78f8d
79aed54
 
ec78f8d
79aed54
 
 
 
 
 
 
 
 
 
 
ec78f8d
79aed54
 
ec78f8d
79aed54
 
 
 
 
 
 
 
 
 
 
ec78f8d
79aed54
 
ec78f8d
79aed54
c8b512d
4a0e5e6
eea39c6
4a0e5e6
 
 
 
 
 
 
 
 
 
eea39c6
5540fdf
4a0e5e6
 
 
 
 
 
 
 
 
 
 
a602180
 
4a0e5e6
fe4e3d2
b360ddf
 
 
eea39c6
 
b360ddf
eea39c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b360ddf
eea39c6
b360ddf
 
 
 
eea39c6
 
 
b360ddf
 
 
 
 
 
 
eea39c6
b360ddf
 
 
fe4e3d2
b360ddf
eea39c6
2795a73
 
 
 
 
b360ddf
eea39c6
b360ddf
 
eea39c6
b360ddf
eea39c6
 
b360ddf
 
2795a73
eea39c6
b360ddf
 
eea39c6
 
 
b360ddf
 
 
eea39c6
 
 
b360ddf
eea39c6
b360ddf
eea39c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
language: en
license: cc-by-4.0
tags:
- deberta
- deberta-v3
datasets:
- squad_v2
base_model: microsoft/deberta-v3-base
model-index:
- name: deepset/deberta-v3-base-squad2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 83.8248
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2IyZTEyYzNlOTAwZmFlNWRiZTdiNzQzMTUyM2FmZTQ3ZWQwNWZmMzc2ZDVhYWYyMzkxOTUyMGNlMWY0M2E5MiIsInZlcnNpb24iOjF9.y8KvfefMLI977BYun0X1rAq5qudmezW_UJe9mh6sYBoiWaBosDO5TRnEGR1BHzdxmv2EgPK_PSomtZvb043jBQ
    - type: f1
      value: 87.41
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVhNjAwM2Q5N2Y3MGU4ZWY3N2Y0MmNjYWYwYmQzNTdiYWExODhkYmQ1YjIwM2I1ODEzNWIxZDI1ZWQ1YWRjNSIsInZlcnNpb24iOjF9.Jk0v1ZheLRFz6k9iNAgCMMZtPYj5eVwUCku4E76wRYc-jHPmiUuxvNiNkn6NW-jkBD8bJGMqDSjJyVpVMn9pBA
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - type: exact_match
      value: 84.9678
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWUxYTg4MzU3YTdmMDRmMGM0NjFjMTcwNGM3YzljM2RkMTc1ZGNhMDQwMTgwNGI0ZDE4ZGMxZTE3YjY5YzQ0ZiIsInZlcnNpb24iOjF9.KKaJ1UtikNe2g6T8XhLoWNtL9X4dHHyl_O4VZ5LreBT9nXneGc21lI1AW3n8KXTFGemzRpRMvmCDyKVDHucdDQ
    - type: f1
      value: 92.2777
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDU0ZTQwMzg4ZDY1ZWYxOGIxMzY2ODljZTBkMTNlYjA0ODBjNjcxNTg3ZDliYWU1YTdkYTM2NTIxOTg1MGM4OCIsInZlcnNpb24iOjF9.8VHg1BXx6gLw_K7MUK2QSE80Y9guiVR8n8K8nX4laGsLibxv5u_yDv9F3ahbUa1eZG_bbidl93TY2qFUiYHtAQ
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: adversarial_qa
      type: adversarial_qa
      config: adversarialQA
      split: validation
    metrics:
    - type: exact_match
      value: 30.733
      name: Exact Match
    - type: f1
      value: 44.099
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_adversarial
      type: squad_adversarial
      config: AddOneSent
      split: validation
    metrics:
    - type: exact_match
      value: 79.295
      name: Exact Match
    - type: f1
      value: 86.609
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts amazon
      type: squadshifts
      config: amazon
      split: test
    metrics:
    - type: exact_match
      value: 68.680
      name: Exact Match
    - type: f1
      value: 83.832
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts new_wiki
      type: squadshifts
      config: new_wiki
      split: test
    metrics:
    - type: exact_match
      value: 80.171
      name: Exact Match
    - type: f1
      value: 90.452
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts nyt
      type: squadshifts
      config: nyt
      split: test
    metrics:
    - type: exact_match
      value: 81.570
      name: Exact Match
    - type: f1
      value: 90.644
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts reddit
      type: squadshifts
      config: reddit
      split: test
    metrics:
    - type: exact_match
      value: 66.990
      name: Exact Match
    - type: f1
      value: 80.231
      name: F1
---

# deberta-v3-base for Extractive QA 

This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. 


## Overview
**Language model:** deberta-v3-base  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)  
**Infrastructure**: 1x NVIDIA A10G

## Hyperparameters

```
batch_size = 12
n_epochs = 4
base_LM_model = "deberta-v3-base"
max_seq_len = 512
learning_rate = 2e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
``` 

## Usage

### In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. 
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
```python
# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/roberta-base-squad2")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
```
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```


## Authors
**Sebastian Lee:** sebastian.lee [at] deepset.ai  
**Timo M枚ller:** timo.moeller [at] deepset.ai  
**Malte Pietsch:** malte.pietsch [at] deepset.ai  

## About us

<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
     </div>
     <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).

Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)