--- language: en license: cc-by-4.0 tags: - deberta - deberta-v3 datasets: - squad_v2 base_model: microsoft/deberta-v3-base model-index: - name: deepset/deberta-v3-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 83.8248 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2IyZTEyYzNlOTAwZmFlNWRiZTdiNzQzMTUyM2FmZTQ3ZWQwNWZmMzc2ZDVhYWYyMzkxOTUyMGNlMWY0M2E5MiIsInZlcnNpb24iOjF9.y8KvfefMLI977BYun0X1rAq5qudmezW_UJe9mh6sYBoiWaBosDO5TRnEGR1BHzdxmv2EgPK_PSomtZvb043jBQ - type: f1 value: 87.41 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVhNjAwM2Q5N2Y3MGU4ZWY3N2Y0MmNjYWYwYmQzNTdiYWExODhkYmQ1YjIwM2I1ODEzNWIxZDI1ZWQ1YWRjNSIsInZlcnNpb24iOjF9.Jk0v1ZheLRFz6k9iNAgCMMZtPYj5eVwUCku4E76wRYc-jHPmiUuxvNiNkn6NW-jkBD8bJGMqDSjJyVpVMn9pBA - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 84.9678 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWUxYTg4MzU3YTdmMDRmMGM0NjFjMTcwNGM3YzljM2RkMTc1ZGNhMDQwMTgwNGI0ZDE4ZGMxZTE3YjY5YzQ0ZiIsInZlcnNpb24iOjF9.KKaJ1UtikNe2g6T8XhLoWNtL9X4dHHyl_O4VZ5LreBT9nXneGc21lI1AW3n8KXTFGemzRpRMvmCDyKVDHucdDQ - type: f1 value: 92.2777 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDU0ZTQwMzg4ZDY1ZWYxOGIxMzY2ODljZTBkMTNlYjA0ODBjNjcxNTg3ZDliYWU1YTdkYTM2NTIxOTg1MGM4OCIsInZlcnNpb24iOjF9.8VHg1BXx6gLw_K7MUK2QSE80Y9guiVR8n8K8nX4laGsLibxv5u_yDv9F3ahbUa1eZG_bbidl93TY2qFUiYHtAQ - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 30.733 name: Exact Match - type: f1 value: 44.099 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 79.295 name: Exact Match - type: f1 value: 86.609 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 68.680 name: Exact Match - type: f1 value: 83.832 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 80.171 name: Exact Match - type: f1 value: 90.452 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 81.570 name: Exact Match - type: f1 value: 90.644 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 66.990 name: Exact Match - type: f1 value: 80.231 name: F1 --- # deberta-v3-base for Extractive QA This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** deberta-v3-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline) **Infrastructure**: 1x NVIDIA A10G ## Hyperparameters ``` batch_size = 12 n_epochs = 4 base_LM_model = "deberta-v3-base" max_seq_len = 512 learning_rate = 2e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride = 128 max_query_length = 64 ``` ## Usage ### In Haystack Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/): ```python # After running pip install haystack-ai "transformers[torch,sentencepiece]" from haystack import Document from haystack.components.readers import ExtractiveReader docs = [ Document(content="Python is a popular programming language"), Document(content="python ist eine beliebte Programmiersprache"), ] reader = ExtractiveReader(model="deepset/roberta-base-squad2") reader.warm_up() question = "What is a popular programming language?" result = reader.run(query=question, documents=docs) # {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]} ``` For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline). ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Sebastian Lee:** sebastian.lee [at] deepset.ai **Timo Möller:** timo.moeller [at] deepset.ai **Malte Pietsch:** malte.pietsch [at] deepset.ai ## About us
For more info on Haystack, visit our GitHub repo and Documentation. We also have a Discord community open to everyone!
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)