--- language: en datasets: - squad_v2 license: cc-by-4.0 tags: - deberta - deberta-v3 model-index: - name: deepset/deberta-v3-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 83.8248 verified: true - name: F1 type: f1 value: 87.41 verified: true --- # deberta-v3-base for QA This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** deberta-v3-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: A10G Tensor Core GPU ## Hyperparameters ``` batch_size = 12 n_epochs = 4 base_LM_model = "deberta-v3-base" max_seq_len = 512 learning_rate = 2e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride = 128 max_query_length = 64 ``` ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/deberta-v3-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/deberta-v3-base-squad2",tokenizer="deepset/deberta-v3-base-squad2") ``` ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/deberta-v3-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## About us
For more info on Haystack, visit our GitHub repo and Documentation. We also have a community open to everyone!
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)