deepfake_gi_fastGAN / train_4ch.py
vlbthambawita's picture
First
7f49ac7
import torch
from torch import nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
from torch.utils.data import Subset
from torchvision import transforms
from torchvision import utils as vutils
import argparse
import random
from tqdm import tqdm
from models import weights_init, Discriminator, Generator
from operation import copy_G_params, load_params, get_dir
from operation import ImageFolder, InfiniteSamplerWrapper
from diffaug import DiffAugment
#Vajira
from custom_data import ImageAndMaskDataFromSinGAN
policy = 'color,translation'
import lpips
percept = lpips.PerceptualLoss(model='net-lin', net='vgg', use_gpu=True)
#torch.backends.cudnn.benchmark = True
def crop_image_by_part(image, part):
hw = image.shape[2]//2
if part==0:
return image[:,:,:hw,:hw]
if part==1:
return image[:,:,:hw,hw:]
if part==2:
return image[:,:,hw:,:hw]
if part==3:
return image[:,:,hw:,hw:]
def train_d(net, data, label="real"):
"""Train function of discriminator"""
if label=="real":
part = random.randint(0, 3)
#part = random.randint(0, 4)
pred, [rec_all, rec_small, rec_part] = net(data, label, part=part)
# new modifications
data_img = data[:,0:3, :, :]
rec_all_img = rec_all[:, 0:3, :, :]
rec_small_img = rec_small[:, 0:3, :, :]
rec_part_img = rec_part[:, 0:3, :, :]
#print("data shape=", data.shape)
#print("rec_all shape=", rec_all.shape)
err = F.relu( torch.rand_like(pred) * 0.2 + 0.8 - pred).mean() + \
percept( rec_all_img, F.interpolate(data_img, rec_all.shape[2]) ).sum() +\
percept( rec_small_img, F.interpolate(data_img, rec_small.shape[2]) ).sum() +\
percept( rec_part_img, F.interpolate(crop_image_by_part(data_img, part), rec_part.shape[2]) ).sum()
err.backward()
return pred.mean().item(), rec_all, rec_small, rec_part
else:
pred = net(data, label)
err = F.relu( torch.rand_like(pred) * 0.2 + 0.8 + pred).mean()
err.backward()
return pred.mean().item()
def train(args):
#data_root = args.path
total_iterations = args.iter
checkpoint = args.ckpt
batch_size = args.batch_size
im_size = args.im_size
ndf = 64
ngf = 64
nz = 256
nlr = 0.0002
nbeta1 = 0.5
use_cuda = True
multi_gpu = True
dataloader_workers = 8
current_iteration = 0
save_interval = 100
saved_model_folder, saved_image_folder = get_dir(args)
device = torch.device("cpu")
if use_cuda:
device = torch.device("cuda:0")
transform_list = [
transforms.Resize((int(im_size),int(im_size))),
transforms.RandomHorizontalFlip(),
#transforms.ToTensor(), # removed by Vajira, check the dataloader
#transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # removed by Vajira, check the dataloader
]
trans = transforms.Compose(transform_list)
#if 'lmdb' in data_root:
# from operation import MultiResolutionDataset
# dataset = MultiResolutionDataset(data_root, trans, 1024)
#else:
#dataset = ImageFolder(root=data_root, transform=trans)
dataset = ImageAndMaskDataFromSinGAN(args.path_img, args.path_mask, transform=trans)
#print("dataset size=", len(dataset))
if args.num_imgs_to_train == -1 :
dataset = Subset(dataset, [i for i in range(0, len(dataset))])
else:
dataset = Subset(dataset, [i for i in range(0, args.num_imgs_to_train)]) # to control number of images to train
#print("dataset size=", len(dataset))
dataloader = iter(DataLoader(dataset, batch_size=batch_size, shuffle=False,
sampler=InfiniteSamplerWrapper(dataset), num_workers=dataloader_workers, pin_memory=True))
'''
loader = MultiEpochsDataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=dataloader_workers,
pin_memory=True)
dataloader = CudaDataLoader(loader, 'cuda')
'''
#from model_s import Generator, Discriminator
netG = Generator(ngf=ngf, nz=nz, im_size=im_size, nc=args.nc)
netG.apply(weights_init)
netD = Discriminator(ndf=ndf, im_size=im_size, nc=args.nc)
netD.apply(weights_init)
netG.to(device)
netD.to(device)
avg_param_G = copy_G_params(netG)
fixed_noise = torch.FloatTensor(8, nz).normal_(0, 1).to(device)
if checkpoint != 'None':
ckpt = torch.load(checkpoint)
netG.load_state_dict(ckpt['g'])
netD.load_state_dict(ckpt['d'])
avg_param_G = ckpt['g_ema']
optimizerG.load_state_dict(ckpt['opt_g'])
optimizerD.load_state_dict(ckpt['opt_d'])
current_iteration = int(checkpoint.split('_')[-1].split('.')[0])
del ckpt
if multi_gpu:
netG = nn.DataParallel(netG.to(device))
netD = nn.DataParallel(netD.to(device))
optimizerG = optim.Adam(netG.parameters(), lr=nlr, betas=(nbeta1, 0.999))
optimizerD = optim.Adam(netD.parameters(), lr=nlr, betas=(nbeta1, 0.999))
for iteration in tqdm(range(current_iteration, total_iterations+1)):
real_image = next(dataloader)
real_image = real_image.to(device)
current_batch_size = real_image.size(0)
noise = torch.Tensor(current_batch_size, nz).normal_(0, 1).to(device)
fake_images = netG(noise)
real_image = DiffAugment(real_image, policy=policy)
fake_images = [DiffAugment(fake, policy=policy) for fake in fake_images]
## 2. train Discriminator
netD.zero_grad()
err_dr, rec_img_all, rec_img_small, rec_img_part = train_d(netD, real_image, label="real")
train_d(netD, [fi.detach() for fi in fake_images], label="fake")
optimizerD.step()
## 3. train Generator
netG.zero_grad()
pred_g = netD(fake_images, "fake")
err_g = -pred_g.mean()
err_g.backward()
optimizerG.step()
for p, avg_p in zip(netG.parameters(), avg_param_G):
avg_p.mul_(0.999).add_(0.001 * p.data)
if iteration % 100 == 0:
print("GAN: loss d: %.5f loss g: %.5f"%(err_dr, -err_g.item()))
if iteration % (save_interval*10) == 0:
backup_para = copy_G_params(netG)
load_params(netG, avg_param_G)
with torch.no_grad():
vutils.save_image(netG(fixed_noise)[0].add(1).mul(0.5), saved_image_folder+'/%d.png'%iteration, nrow=4)
vutils.save_image( torch.cat([
F.interpolate(real_image, 128),
rec_img_all, rec_img_small,
rec_img_part]).add(1).mul(0.5), saved_image_folder+'/rec_%d.png'%iteration )
load_params(netG, backup_para)
if iteration % (save_interval*50) == 0 or iteration == total_iterations:
backup_para = copy_G_params(netG)
load_params(netG, avg_param_G)
torch.save({'g':netG.state_dict(),'d':netD.state_dict()}, saved_model_folder+'/%d.pth'%iteration)
load_params(netG, backup_para)
torch.save({'g':netG.state_dict(),
'd':netD.state_dict(),
'g_ema': avg_param_G,
'opt_g': optimizerG.state_dict(),
'opt_d': optimizerD.state_dict()}, saved_model_folder+'/all_%d.pth'%iteration)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='region gan')
parser.add_argument('--path', type=str, default='../lmdbs/art_landscape_1k', help='path of resource dataset, should be a folder that has one or many sub image folders inside')
parser.add_argument('--cuda', type=int, default=1, help='index of gpu to use')
parser.add_argument('--name', type=str, default='test_4ch_num_img_5', help='experiment name')
parser.add_argument('--iter', type=int, default=50000, help='number of iterations')
parser.add_argument('--start_iter', type=int, default=0, help='the iteration to start training')
parser.add_argument('--batch_size', type=int, default=8, help='mini batch number of images')
parser.add_argument('--im_size', type=int, default=256, help='image resolution')
parser.add_argument('--ckpt', type=str, default='None', help='checkpoint weight path if have one')
# new parameters- added to process 4 channels data
parser.add_argument("--nc", type=int, default=4, help="number of channels in input images")
parser.add_argument("--path_img", default="/work/vajira/DATA/kvasir_seg/real_images_root/real_images", help="image directory")
parser.add_argument("--path_mask", default="/work/vajira/DATA/kvasir_seg/real_masks_root/real_masks", help = "mask directory")
parser.add_argument("--num_imgs_to_train", default=5, type=int, help="number of samples to train. -1 for use all")
args = parser.parse_args()
print(args)
train(args)