File size: 2,152 Bytes
159e007
 
58e2732
159e007
 
 
 
58e2732
159e007
 
 
 
 
cf53e14
159e007
 
 
 
 
 
 
 
 
810f43a
159e007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
library_name: transformers
base_model: mistralai/Mistral-7B-v0.1
datasets:
- b-mc2/sql-create-context
model-index:
- name: mistral-7b-text-to-sql_full-model
  results: []
reference:
- https://www.philschmid.de/fine-tune-llms-in-2024-with-trl
language:
- en
pipeline_tag: text2text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-text-to-sql_full-model

- This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the b-mc2/sql-create-context dataset.
- These are the full model weights (merged with adapter weights), and the code to use these for generation is given below.
- Primary reference: https://www.philschmid.de/fine-tune-llms-in-2024-with-trl

## Model description

- Model type: Language model
- Language(s) (NLP): English
- License: Apache 2.0
- Finetuned from model : Mistral-7B-v0.1

## How to get started with the model

```python
import torch

from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model directly

tokenizer = AutoTokenizer.from_pretrained("delayedkarma/mistral-7b-text-to-sql_full-model")
model = AutoModelForCausalLM.from_pretrained("delayedkarma/mistral-7b-text-to-sql_full-model")

text = "How many matched scored 3–6, 7–6(5), 6–3?"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=40)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Framework versions

- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.2.2
- Datasets 2.16.1
- Tokenizers 0.15.2