pushing files to the repo from the example!
Browse files- README.md +73 -71
- config.json +68 -68
- confusion_matrix.png +0 -0
- model.pkl +1 -1
- tree.png +0 -0
README.md
CHANGED
@@ -11,97 +11,97 @@ widget:
|
|
11 |
- material_7
|
12 |
- material_7
|
13 |
attribute_1:
|
14 |
-
-
|
15 |
-
- material_8
|
16 |
- material_5
|
|
|
17 |
attribute_2:
|
18 |
-
-
|
19 |
-
-
|
20 |
- 6
|
21 |
attribute_3:
|
22 |
-
-
|
23 |
-
- 5
|
24 |
- 6
|
|
|
25 |
loading:
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
measurement_0:
|
30 |
-
-
|
|
|
31 |
- 11
|
32 |
-
- 4
|
33 |
measurement_1:
|
34 |
-
-
|
35 |
-
-
|
36 |
-
-
|
37 |
measurement_10:
|
38 |
-
-
|
39 |
-
- 15.
|
40 |
-
-
|
41 |
measurement_11:
|
42 |
-
-
|
43 |
-
-
|
44 |
-
- 20.
|
45 |
measurement_12:
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
measurement_13:
|
50 |
-
-
|
51 |
-
-
|
52 |
-
-
|
53 |
measurement_14:
|
54 |
-
-
|
55 |
-
-
|
56 |
-
-
|
57 |
measurement_15:
|
58 |
-
-
|
59 |
-
-
|
60 |
-
-
|
61 |
measurement_16:
|
62 |
-
-
|
63 |
-
-
|
64 |
-
-
|
65 |
measurement_17:
|
66 |
-
-
|
67 |
-
-
|
68 |
-
-
|
69 |
measurement_2:
|
70 |
-
-
|
71 |
-
-
|
72 |
-
-
|
73 |
measurement_3:
|
74 |
-
-
|
75 |
-
- 18.
|
76 |
-
-
|
77 |
measurement_4:
|
78 |
-
-
|
79 |
-
- 10.
|
80 |
-
-
|
81 |
measurement_5:
|
82 |
-
-
|
83 |
-
-
|
84 |
-
-
|
85 |
measurement_6:
|
86 |
-
- .
|
87 |
-
-
|
88 |
-
- 17.
|
89 |
measurement_7:
|
90 |
-
-
|
91 |
-
-
|
92 |
-
-
|
93 |
measurement_8:
|
94 |
-
-
|
95 |
-
-
|
96 |
-
-
|
97 |
measurement_9:
|
98 |
-
- .
|
99 |
-
-
|
100 |
-
-
|
101 |
product_code:
|
102 |
-
-
|
103 |
-
- A
|
104 |
- D
|
|
|
105 |
---
|
106 |
|
107 |
# Model description
|
@@ -220,7 +220,7 @@ The model is trained with below hyperparameters.
|
|
220 |
|
221 |
The model plot is below.
|
222 |
|
223 |
-
<style>#sk-cbcf73f3-3df0-460c-a28c-e975797de98c {color: black;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c pre{padding: 0;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable {background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator:hover {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-item {z-index: 1;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:only-child::after {width: 0;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-text-repr-fallback {display: none;}</style><div id="sk-cbcf73f3-3df0-460c-a28c-e975797de98c" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4039f6df-38bb-4617-ac8b-f6e94de8a91c" type="checkbox" ><label for="4039f6df-38bb-4617-ac8b-f6e94de8a91c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="61e07386-e7b7-418a-9af8-41b0261577b4" type="checkbox" ><label for="61e07386-e7b7-418a-9af8-41b0261577b4" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="543953aa-7345-4433-b640-9ebcb9cfaed6" type="checkbox" ><label for="543953aa-7345-4433-b640-9ebcb9cfaed6" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="28f1b85a-54e9-44db-b914-819af4998fd1" type="checkbox" ><label for="28f1b85a-54e9-44db-b914-819af4998fd1" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d8710d93-e747-4796-95d5-77538856cb1d" type="checkbox" ><label for="d8710d93-e747-4796-95d5-77538856cb1d" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b23ea887-b3eb-4dbc-ba26-dd3e0e018c70" type="checkbox" ><label for="b23ea887-b3eb-4dbc-ba26-dd3e0e018c70" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c87a37af-e576-4840-bf8c-7e7f5b8ab39e" type="checkbox" ><label for="c87a37af-e576-4840-bf8c-7e7f5b8ab39e" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>['attribute_0']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="580ea11e-4df6-4bce-b994-dc4d342d42d4" type="checkbox" ><label for="580ea11e-4df6-4bce-b994-dc4d342d42d4" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8ccfa95c-d0f7-4dd2-8be2-0885a564d231" type="checkbox" ><label for="8ccfa95c-d0f7-4dd2-8be2-0885a564d231" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>['attribute_1']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e1ed00d2-3cb6-43cd-9ba5-bc0518c93345" type="checkbox" ><label for="e1ed00d2-3cb6-43cd-9ba5-bc0518c93345" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b94ddf76-0075-4efc-9cc4-8c6b69fefad5" type="checkbox" ><label for="b94ddf76-0075-4efc-9cc4-8c6b69fefad5" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>['product_code']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1d06bc4d-04b9-44d6-a23f-cdc26d70b7e2" type="checkbox" ><label for="1d06bc4d-04b9-44d6-a23f-cdc26d70b7e2" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="208c2a51-a582-469b-9bd1-23b9a3968840" type="checkbox" ><label for="208c2a51-a582-469b-9bd1-23b9a3968840" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
|
224 |
|
225 |
## Evaluation Results
|
226 |
|
@@ -230,8 +230,8 @@ You can find the details about evaluation process and the evaluation results.
|
|
230 |
|
231 |
| Metric | Value |
|
232 |
|----------|----------|
|
233 |
-
| accuracy | 0.
|
234 |
-
| f1 score | 0.
|
235 |
|
236 |
# How to Get Started with the Model
|
237 |
|
@@ -272,10 +272,12 @@ Below you can find information related to citation.
|
|
272 |
```
|
273 |
|
274 |
|
275 |
-
|
276 |
-
|
|
|
277 |
|
|
|
278 |
|
|
|
279 |
|
280 |
-
Confusion Matrix
|
281 |
-
![Confusion Matrix](confusion_matrix.png)
|
|
|
11 |
- material_7
|
12 |
- material_7
|
13 |
attribute_1:
|
14 |
+
- material_6
|
|
|
15 |
- material_5
|
16 |
+
- material_6
|
17 |
attribute_2:
|
18 |
+
- 6
|
19 |
+
- 6
|
20 |
- 6
|
21 |
attribute_3:
|
22 |
+
- 9
|
|
|
23 |
- 6
|
24 |
+
- 9
|
25 |
loading:
|
26 |
+
- 101.52
|
27 |
+
- 91.34
|
28 |
+
- 167.03
|
29 |
measurement_0:
|
30 |
+
- 9
|
31 |
+
- 10
|
32 |
- 11
|
|
|
33 |
measurement_1:
|
34 |
+
- 11
|
35 |
+
- 11
|
36 |
+
- 5
|
37 |
measurement_10:
|
38 |
+
- 14.926
|
39 |
+
- 15.162
|
40 |
+
- 16.398
|
41 |
measurement_11:
|
42 |
+
- 20.394
|
43 |
+
- 19.46
|
44 |
+
- 20.613
|
45 |
measurement_12:
|
46 |
+
- 11.829
|
47 |
+
- 9.114
|
48 |
+
- 11.007
|
49 |
measurement_13:
|
50 |
+
- 16.195
|
51 |
+
- 16.024
|
52 |
+
- 16.061
|
53 |
measurement_14:
|
54 |
+
- 16.517
|
55 |
+
- 17.132
|
56 |
+
- 15.18
|
57 |
measurement_15:
|
58 |
+
- 13.826
|
59 |
+
- 12.257
|
60 |
+
- 15.758
|
61 |
measurement_16:
|
62 |
+
- 14.206
|
63 |
+
- 15.094
|
64 |
+
- .nan
|
65 |
measurement_17:
|
66 |
+
- 723.712
|
67 |
+
- 896.835
|
68 |
+
- 893.454
|
69 |
measurement_2:
|
70 |
+
- 2
|
71 |
+
- 10
|
72 |
+
- 6
|
73 |
measurement_3:
|
74 |
+
- 17.492
|
75 |
+
- 18.114
|
76 |
+
- 18.42
|
77 |
measurement_4:
|
78 |
+
- 13.962
|
79 |
+
- 10.185
|
80 |
+
- 13.565
|
81 |
measurement_5:
|
82 |
+
- 15.716
|
83 |
+
- 18.06
|
84 |
+
- 16.916
|
85 |
measurement_6:
|
86 |
+
- 17.104
|
87 |
+
- 18.283
|
88 |
+
- 17.917
|
89 |
measurement_7:
|
90 |
+
- 12.377
|
91 |
+
- 10.957
|
92 |
+
- 10.394
|
93 |
measurement_8:
|
94 |
+
- 19.221
|
95 |
+
- 20.638
|
96 |
+
- 19.805
|
97 |
measurement_9:
|
98 |
+
- 11.613
|
99 |
+
- 11.804
|
100 |
+
- 12.012
|
101 |
product_code:
|
102 |
+
- E
|
|
|
103 |
- D
|
104 |
+
- E
|
105 |
---
|
106 |
|
107 |
# Model description
|
|
|
220 |
|
221 |
The model plot is below.
|
222 |
|
223 |
+
<style>#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 {color: black;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 pre{padding: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable {background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-item {z-index: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:only-child::after {width: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="48fbfeb0-e954-46f7-9a36-8dfe86284fca" type="checkbox" ><label for="48fbfeb0-e954-46f7-9a36-8dfe86284fca" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="157828b7-30d1-4b5b-b25e-971143379fff" type="checkbox" ><label for="157828b7-30d1-4b5b-b25e-971143379fff" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3bde7e44-3687-4b99-a3b7-b4e87023ec85" type="checkbox" ><label for="3bde7e44-3687-4b99-a3b7-b4e87023ec85" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ef9279cb-7d77-4ef1-aafe-26e433e2a615" type="checkbox" ><label for="ef9279cb-7d77-4ef1-aafe-26e433e2a615" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b079e8d7-f789-4622-ad66-197193ef0061" type="checkbox" ><label for="b079e8d7-f789-4622-ad66-197193ef0061" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="969f6026-8077-468a-b332-8ceb69bac4e9" type="checkbox" ><label for="969f6026-8077-468a-b332-8ceb69bac4e9" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" type="checkbox" ><label for="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>['attribute_0']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" type="checkbox" ><label for="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="be08add7-98fc-40b5-a259-d462d738780a" type="checkbox" ><label for="be08add7-98fc-40b5-a259-d462d738780a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>['attribute_1']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" type="checkbox" ><label for="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="244735dc-f1e1-458c-a1c6-60ef847b9cae" type="checkbox" ><label for="244735dc-f1e1-458c-a1c6-60ef847b9cae" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>['product_code']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f1a1c41-e1c4-40ce-afd9-9658030b3423" type="checkbox" ><label for="2f1a1c41-e1c4-40ce-afd9-9658030b3423" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="25044b48-b814-45f9-a75b-9ee472bdc79c" type="checkbox" ><label for="25044b48-b814-45f9-a75b-9ee472bdc79c" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
|
224 |
|
225 |
## Evaluation Results
|
226 |
|
|
|
230 |
|
231 |
| Metric | Value |
|
232 |
|----------|----------|
|
233 |
+
| accuracy | 0.791961 |
|
234 |
+
| f1 score | 0.791961 |
|
235 |
|
236 |
# How to Get Started with the Model
|
237 |
|
|
|
272 |
```
|
273 |
|
274 |
|
275 |
+
# Additional Content
|
276 |
+
|
277 |
+
## Tree Plot
|
278 |
|
279 |
+
![Tree Plot](decision-tree-playground-kaggle/tree.png)
|
280 |
|
281 |
+
## Confusion Matrix
|
282 |
|
283 |
+
![Confusion Matrix](decision-tree-playground-kaggle/confusion_matrix.png)
|
|
config.json
CHANGED
@@ -36,119 +36,119 @@
|
|
36 |
"material_7"
|
37 |
],
|
38 |
"attribute_1": [
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"
|
42 |
],
|
43 |
"attribute_2": [
|
44 |
-
|
45 |
-
|
46 |
6
|
47 |
],
|
48 |
"attribute_3": [
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
],
|
53 |
"loading": [
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
],
|
58 |
"measurement_0": [
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
],
|
63 |
"measurement_1": [
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
],
|
68 |
"measurement_10": [
|
69 |
-
|
70 |
-
15.
|
71 |
-
|
72 |
],
|
73 |
"measurement_11": [
|
74 |
-
|
75 |
-
|
76 |
-
20.
|
77 |
],
|
78 |
"measurement_12": [
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
],
|
83 |
"measurement_13": [
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
],
|
88 |
"measurement_14": [
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
],
|
93 |
"measurement_15": [
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
],
|
98 |
"measurement_16": [
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
],
|
103 |
"measurement_17": [
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
],
|
108 |
"measurement_2": [
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
],
|
113 |
"measurement_3": [
|
114 |
-
|
115 |
-
18.
|
116 |
-
|
117 |
],
|
118 |
"measurement_4": [
|
119 |
-
|
120 |
-
10.
|
121 |
-
|
122 |
],
|
123 |
"measurement_5": [
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
],
|
128 |
"measurement_6": [
|
129 |
-
|
130 |
-
|
131 |
-
17.
|
132 |
],
|
133 |
"measurement_7": [
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
],
|
138 |
"measurement_8": [
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
],
|
143 |
"measurement_9": [
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
],
|
148 |
"product_code": [
|
149 |
-
"
|
150 |
-
"
|
151 |
-
"
|
152 |
]
|
153 |
},
|
154 |
"model": {
|
|
|
36 |
"material_7"
|
37 |
],
|
38 |
"attribute_1": [
|
39 |
+
"material_6",
|
40 |
+
"material_5",
|
41 |
+
"material_6"
|
42 |
],
|
43 |
"attribute_2": [
|
44 |
+
6,
|
45 |
+
6,
|
46 |
6
|
47 |
],
|
48 |
"attribute_3": [
|
49 |
+
9,
|
50 |
+
6,
|
51 |
+
9
|
52 |
],
|
53 |
"loading": [
|
54 |
+
101.52,
|
55 |
+
91.34,
|
56 |
+
167.03
|
57 |
],
|
58 |
"measurement_0": [
|
59 |
+
9,
|
60 |
+
10,
|
61 |
+
11
|
62 |
],
|
63 |
"measurement_1": [
|
64 |
+
11,
|
65 |
+
11,
|
66 |
+
5
|
67 |
],
|
68 |
"measurement_10": [
|
69 |
+
14.926,
|
70 |
+
15.162,
|
71 |
+
16.398
|
72 |
],
|
73 |
"measurement_11": [
|
74 |
+
20.394,
|
75 |
+
19.46,
|
76 |
+
20.613
|
77 |
],
|
78 |
"measurement_12": [
|
79 |
+
11.829,
|
80 |
+
9.114,
|
81 |
+
11.007
|
82 |
],
|
83 |
"measurement_13": [
|
84 |
+
16.195,
|
85 |
+
16.024,
|
86 |
+
16.061
|
87 |
],
|
88 |
"measurement_14": [
|
89 |
+
16.517,
|
90 |
+
17.132,
|
91 |
+
15.18
|
92 |
],
|
93 |
"measurement_15": [
|
94 |
+
13.826,
|
95 |
+
12.257,
|
96 |
+
15.758
|
97 |
],
|
98 |
"measurement_16": [
|
99 |
+
14.206,
|
100 |
+
15.094,
|
101 |
+
NaN
|
102 |
],
|
103 |
"measurement_17": [
|
104 |
+
723.712,
|
105 |
+
896.835,
|
106 |
+
893.454
|
107 |
],
|
108 |
"measurement_2": [
|
109 |
+
2,
|
110 |
+
10,
|
111 |
+
6
|
112 |
],
|
113 |
"measurement_3": [
|
114 |
+
17.492,
|
115 |
+
18.114,
|
116 |
+
18.42
|
117 |
],
|
118 |
"measurement_4": [
|
119 |
+
13.962,
|
120 |
+
10.185,
|
121 |
+
13.565
|
122 |
],
|
123 |
"measurement_5": [
|
124 |
+
15.716,
|
125 |
+
18.06,
|
126 |
+
16.916
|
127 |
],
|
128 |
"measurement_6": [
|
129 |
+
17.104,
|
130 |
+
18.283,
|
131 |
+
17.917
|
132 |
],
|
133 |
"measurement_7": [
|
134 |
+
12.377,
|
135 |
+
10.957,
|
136 |
+
10.394
|
137 |
],
|
138 |
"measurement_8": [
|
139 |
+
19.221,
|
140 |
+
20.638,
|
141 |
+
19.805
|
142 |
],
|
143 |
"measurement_9": [
|
144 |
+
11.613,
|
145 |
+
11.804,
|
146 |
+
12.012
|
147 |
],
|
148 |
"product_code": [
|
149 |
+
"E",
|
150 |
+
"D",
|
151 |
+
"E"
|
152 |
]
|
153 |
},
|
154 |
"model": {
|
confusion_matrix.png
CHANGED
model.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6824
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72099d3816c44c13b2284469de690419a7326caef2c0401ab91a37e7c8c4348e
|
3 |
size 6824
|
tree.png
CHANGED