Commit
•
0e1f8ee
1
Parent(s):
30293f6
Adding notebooks
Browse files- 01-tgi-ie-benchmark.ipynb +262 -0
- 02-tgi-plots.ipynb +167 -0
01-tgi-ie-benchmark.ipynb
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "73b1aa22-a1e3-4a1e-9dd2-042ab0f5939a",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"import sys\n",
|
13 |
+
"import json\n",
|
14 |
+
"from getpass import getpass\n",
|
15 |
+
"import subprocess\n",
|
16 |
+
"import os\n",
|
17 |
+
"from datetime import datetime\n",
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"import numpy as np\n",
|
20 |
+
"from huggingface_hub import notebook_login, create_inference_endpoint, list_inference_endpoints, whoami, get_inference_endpoint, get_token\n",
|
21 |
+
"from pathlib import Path\n",
|
22 |
+
"from tqdm.notebook import tqdm"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"id": "772897cb-c2b1-4f9a-8143-ad64aed40b5b",
|
29 |
+
"metadata": {
|
30 |
+
"tags": []
|
31 |
+
},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"notebook_login()"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"id": "8f951213-46a1-4db9-be2c-51c2291ecdc2",
|
41 |
+
"metadata": {
|
42 |
+
"tags": []
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"proj_dir = Path.cwd().parent\n",
|
47 |
+
"print(proj_dir)\n",
|
48 |
+
"LLMPerf_path = proj_dir/'llmperf'"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"id": "267ea96b-b756-4e16-b41a-fee2119edf76",
|
54 |
+
"metadata": {
|
55 |
+
"tags": []
|
56 |
+
},
|
57 |
+
"source": [
|
58 |
+
"# Config"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"id": "2d3341f2-217e-42a5-89fb-1653fd418c48",
|
65 |
+
"metadata": {
|
66 |
+
"tags": []
|
67 |
+
},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"# Endpoint\n",
|
71 |
+
"ENDPOINT_NAME=\"gorgias-benchmark-sp\"\n",
|
72 |
+
"NAMESPACE = 'hf-test-lab'\n",
|
73 |
+
"MODEL = 'meta-llama/Meta-Llama-3-8B-Instruct'\n",
|
74 |
+
"INSTANCE_TYPE = 'nvidia-a100_2'\n",
|
75 |
+
"\n",
|
76 |
+
"# Simulation\n",
|
77 |
+
"RESULTS_DIR = proj_dir/'tgi_bench_results'/INSTANCE_TYPE\n",
|
78 |
+
"tgi_bss = [16, 24, 32, 40, 48, 56, 64]"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "markdown",
|
83 |
+
"id": "f6bbb792-b168-42b8-bff1-c6ea9f6daf79",
|
84 |
+
"metadata": {},
|
85 |
+
"source": [
|
86 |
+
"# Endpoint setup"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": null,
|
92 |
+
"id": "ae923833-8ca1-4d16-85be-a78ffb386c43",
|
93 |
+
"metadata": {
|
94 |
+
"tags": []
|
95 |
+
},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"def create_endpoint(MAX_BATCH_SIZE, name, instance_type):\n",
|
99 |
+
" try:\n",
|
100 |
+
" endpoint = get_inference_endpoint(name=name, namespace=NAMESPACE)\n",
|
101 |
+
" endpoint.wait()\n",
|
102 |
+
" return endpoint\n",
|
103 |
+
" except:\n",
|
104 |
+
" pass\n",
|
105 |
+
" try:\n",
|
106 |
+
" endpoint = create_inference_endpoint(\n",
|
107 |
+
" name,\n",
|
108 |
+
" repository=MODEL,\n",
|
109 |
+
" task=\"text-generation\",\n",
|
110 |
+
" framework=\"pytorch\",\n",
|
111 |
+
" region=\"us-east-1\",\n",
|
112 |
+
" vendor=\"aws\",\n",
|
113 |
+
" accelerator=\"gpu\",\n",
|
114 |
+
" instance_size=\"x1\",\n",
|
115 |
+
" instance_type='nvidia-a100',\n",
|
116 |
+
" min_replica=0,\n",
|
117 |
+
" max_replica=1,\n",
|
118 |
+
" namespace=NAMESPACE,\n",
|
119 |
+
" custom_image={\n",
|
120 |
+
" \"health_route\": \"/health\",\n",
|
121 |
+
" \"env\": {\n",
|
122 |
+
" \"MAX_INPUT_LENGTH\": \"3050\",\n",
|
123 |
+
" \"MAX_TOTAL_TOKENS\": \"3300\",\n",
|
124 |
+
" \"MAX_BATCH_SIZE\": f\"{MAX_BATCH_SIZE}\",\n",
|
125 |
+
" \"HF_TOKEN\": get_token(),\n",
|
126 |
+
" \"MODEL_ID\": \"/repository\",\n",
|
127 |
+
" },\n",
|
128 |
+
" \"url\": \"ghcr.io/huggingface/text-generation-inference:2.0.4\",\n",
|
129 |
+
" },\n",
|
130 |
+
" type=\"protected\",\n",
|
131 |
+
" )\n",
|
132 |
+
" endpoint.wait()\n",
|
133 |
+
" except Exception as create_error:\n",
|
134 |
+
" print(f\"Failed to create inference endpoint: {str(create_error)}\")\n",
|
135 |
+
" return None\n",
|
136 |
+
"\n",
|
137 |
+
" return endpoint"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": null,
|
143 |
+
"id": "491b82b3-4db8-4409-85ce-7c003a6c2f6f",
|
144 |
+
"metadata": {
|
145 |
+
"tags": []
|
146 |
+
},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"def run_command(batch_size, endpoint, tgi_bs):\n",
|
150 |
+
" prefix = f'tgibs_{tgi_bs}__bs_{batch_size}'\n",
|
151 |
+
" vu = batch_size\n",
|
152 |
+
"\n",
|
153 |
+
" # Set environment variables\n",
|
154 |
+
" env = os.environ.copy()\n",
|
155 |
+
" env['HUGGINGFACE_API_BASE'] = endpoint.url\n",
|
156 |
+
" env['HUGGINGFACE_API_KEY'] = get_token()\n",
|
157 |
+
" # Convert pathlib.Path to string and append to PYTHONPATH\n",
|
158 |
+
" env['PYTHONPATH'] = str(LLMPerf_path) + (os.pathsep + env.get('PYTHONPATH', ''))\n",
|
159 |
+
"\n",
|
160 |
+
" # Define the benchmark script path\n",
|
161 |
+
" benchmark_script = str(LLMPerf_path / \"token_benchmark_ray.py\")\n",
|
162 |
+
"\n",
|
163 |
+
" if not os.path.isfile(benchmark_script):\n",
|
164 |
+
" print(f\"LLMPerf script not found at {benchmark_script}, please ensure the path is correct.\")\n",
|
165 |
+
" return \"Script not found\", False\n",
|
166 |
+
"\n",
|
167 |
+
" # Calculate the max number of completed requests\n",
|
168 |
+
" max_requests = vu * 8\n",
|
169 |
+
"\n",
|
170 |
+
" # Generate the results directory name\n",
|
171 |
+
" date_str = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')\n",
|
172 |
+
" results_dir = RESULTS_DIR / f\"{date_str}_{prefix}\"\n",
|
173 |
+
"\n",
|
174 |
+
" # Construct the command to run the benchmark script\n",
|
175 |
+
" command = [\n",
|
176 |
+
" \"python\", benchmark_script,\n",
|
177 |
+
" \"--model\", f\"huggingface/{MODEL}\",\n",
|
178 |
+
" \"--mean-input-tokens\", \"3000\",\n",
|
179 |
+
" \"--stddev-input-tokens\", \"10\",\n",
|
180 |
+
" \"--mean-output-tokens\", \"240\",\n",
|
181 |
+
" \"--stddev-output-tokens\", \"5\",\n",
|
182 |
+
" \"--max-num-completed-requests\", str(min(max_requests, 1500)),\n",
|
183 |
+
" \"--timeout\", \"7200\",\n",
|
184 |
+
" \"--num-concurrent-requests\", str(vu),\n",
|
185 |
+
" \"--results-dir\", str(results_dir),\n",
|
186 |
+
" \"--llm-api\", \"litellm\",\n",
|
187 |
+
" \"--additional-sampling-params\", '{}'\n",
|
188 |
+
" ]\n",
|
189 |
+
"\n",
|
190 |
+
" # Run the command with the modified environment\n",
|
191 |
+
" try:\n",
|
192 |
+
" result = subprocess.check_output(command, stderr=subprocess.STDOUT, env=env).decode('utf-8')\n",
|
193 |
+
" return result, True\n",
|
194 |
+
" except subprocess.CalledProcessError as e:\n",
|
195 |
+
" print(f\"Error with batch size {batch_size}: {e.output.decode()}\")\n",
|
196 |
+
" return e.output.decode(), False\n",
|
197 |
+
"\n",
|
198 |
+
"def find_max_working_batch_size(endpoint, tgi_bs):\n",
|
199 |
+
" batch_sizes = [8, 16, 32, 64, 128, 256]\n",
|
200 |
+
" max_working = None\n",
|
201 |
+
" for size in tqdm(batch_sizes):\n",
|
202 |
+
" tqdm.write(f\"Running: TGIBS {tgi_bs} Client Requests {size}\")\n",
|
203 |
+
" output, success = run_command(size, endpoint, tgi_bs)\n",
|
204 |
+
" if success:\n",
|
205 |
+
" max_working = size\n",
|
206 |
+
" else:\n",
|
207 |
+
" break\n",
|
208 |
+
" if max_working is None:\n",
|
209 |
+
" return \"No working batch size found in the provided list\"\n",
|
210 |
+
" return max_working"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"id": "70a11c08-0bea-43d6-85eb-ef014473c9f1",
|
217 |
+
"metadata": {
|
218 |
+
"tags": []
|
219 |
+
},
|
220 |
+
"outputs": [],
|
221 |
+
"source": [
|
222 |
+
"for tgi_bs in tqdm(tgi_bss):\n",
|
223 |
+
" name = f\"{ENDPOINT_NAME}--tgibs-{tgi_bs}\"\n",
|
224 |
+
" endpoint = create_endpoint(MAX_BATCH_SIZE=tgi_bs, name=name, instance_type=INSTANCE_TYPE) \n",
|
225 |
+
" endpoint.wait()\n",
|
226 |
+
" tqdm.write(f\"Endpoint Created: {name}\")\n",
|
227 |
+
" max_batch_size = find_max_working_batch_size(endpoint=endpoint, tgi_bs=tgi_bs)\n",
|
228 |
+
" endpoint.delete()\n",
|
229 |
+
" tqdm.write(f\"Endpoint Deleted: {name}\")"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"id": "25ef390c-10fe-4466-b8fd-1c01730205d2",
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": []
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"metadata": {
|
242 |
+
"kernelspec": {
|
243 |
+
"display_name": "Python 3 (ipykernel)",
|
244 |
+
"language": "python",
|
245 |
+
"name": "python3"
|
246 |
+
},
|
247 |
+
"language_info": {
|
248 |
+
"codemirror_mode": {
|
249 |
+
"name": "ipython",
|
250 |
+
"version": 3
|
251 |
+
},
|
252 |
+
"file_extension": ".py",
|
253 |
+
"mimetype": "text/x-python",
|
254 |
+
"name": "python",
|
255 |
+
"nbconvert_exporter": "python",
|
256 |
+
"pygments_lexer": "ipython3",
|
257 |
+
"version": "3.10.14"
|
258 |
+
}
|
259 |
+
},
|
260 |
+
"nbformat": 4,
|
261 |
+
"nbformat_minor": 5
|
262 |
+
}
|
02-tgi-plots.ipynb
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "61d4649c-a8ca-494d-8c11-e2aca8faea64",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"from pathlib import Path\n",
|
13 |
+
"import plotly.graph_objects as go\n",
|
14 |
+
"\n",
|
15 |
+
"proj_dir = Path.cwd().parent\n",
|
16 |
+
"proj_dir"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"id": "a59f2e07-2505-4ad3-978d-2f2a8d4c7f16",
|
23 |
+
"metadata": {
|
24 |
+
"tags": []
|
25 |
+
},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"import os\n",
|
29 |
+
"import json\n",
|
30 |
+
"import pandas as pd\n",
|
31 |
+
"\n",
|
32 |
+
"# Define the directory path where your files are located\n",
|
33 |
+
"dir_path = proj_dir/'tgi_bench_results/'\n",
|
34 |
+
"\n",
|
35 |
+
"\n",
|
36 |
+
"def build_df():\n",
|
37 |
+
" # Initialize an empty list to store the dataframes\n",
|
38 |
+
" dfs = []\n",
|
39 |
+
"\n",
|
40 |
+
" # Iterate through the files in the directory\n",
|
41 |
+
" for tgibs_folder in dir_path.glob(\"*/*_tgibs_*\"):\n",
|
42 |
+
" # Check if the file matches the pattern *_summary.json\n",
|
43 |
+
" summary_file = list(tgibs_folder.glob(\"*_summary.json\"))[0]\n",
|
44 |
+
" # Extract the tgibs value from the filename\n",
|
45 |
+
" hw = tgibs_folder.parts[-2]\n",
|
46 |
+
" tgibs_value = tgibs_folder.name.split('_tgibs_')[1].split('__')[0]\n",
|
47 |
+
"\n",
|
48 |
+
" # Load the JSON file\n",
|
49 |
+
" with open(summary_file, 'r') as f:\n",
|
50 |
+
" data = json.load(f)\n",
|
51 |
+
"\n",
|
52 |
+
" # Convert the JSON data to a pandas dataframe\n",
|
53 |
+
" df = pd.DataFrame([data])\n",
|
54 |
+
"\n",
|
55 |
+
" # Add a column with the tgibs value\n",
|
56 |
+
" df['tgibs'] = int(tgibs_value)\n",
|
57 |
+
" df['hw'] = hw\n",
|
58 |
+
" df['id'] = f\"{hw}_{tgibs_value}\"\n",
|
59 |
+
"\n",
|
60 |
+
" # Append the dataframe to the list\n",
|
61 |
+
" dfs.append(df)\n",
|
62 |
+
" df = pd.concat(dfs, ignore_index=True)\n",
|
63 |
+
" df = df.sort_values(by=['tgibs', 'num_concurrent_requests'], ascending=[True, True])\n",
|
64 |
+
" return df"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"id": "d8508fb9-fa31-4e23-80c1-e77a56d3775e",
|
71 |
+
"metadata": {
|
72 |
+
"tags": []
|
73 |
+
},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"df = build_df()\n",
|
77 |
+
"\n",
|
78 |
+
"# Create a figure\n",
|
79 |
+
"fig = go.Figure()\n",
|
80 |
+
"\n",
|
81 |
+
"# Group the dataframe by batch_size\n",
|
82 |
+
"grouped_df = df.groupby('id')\n",
|
83 |
+
"\n",
|
84 |
+
"# List of specific batch_sizes to label\n",
|
85 |
+
"label_batch_sizes = ['nvidia-a100_8', 'nvidia-h100_8', 'nvidia-a100_8', 'nvidia-h100-fp8_8', 'nvidia-a100_medusa_8']\n",
|
86 |
+
"\n",
|
87 |
+
"# Iterate over each group\n",
|
88 |
+
"for batch_size, group in grouped_df:\n",
|
89 |
+
" # Add a line to the figure\n",
|
90 |
+
" fig.add_trace(go.Scatter(\n",
|
91 |
+
" x=group['results_end_to_end_latency_s_mean'],\n",
|
92 |
+
" y=group['results_num_completed_requests_per_min'],\n",
|
93 |
+
" mode='lines+markers',\n",
|
94 |
+
" name=f\"Batch Size: {batch_size}\", # Formatting batch size in the legend\n",
|
95 |
+
" hovertemplate=(\n",
|
96 |
+
" f\"<b>Batch Size: {batch_size}</b><br>\"\n",
|
97 |
+
" \"VU: %{text}<br>\"\n",
|
98 |
+
" \"Latency: %{x:.2f}s<br>\"\n",
|
99 |
+
" \"Throughput: %{y:.2f} reqs/min\"\n",
|
100 |
+
" ) + \"<extra></extra>\",\n",
|
101 |
+
" text=[f\"{v} VU\" for v in group['num_concurrent_requests']] # This will only be visible on hover\n",
|
102 |
+
" ))\n",
|
103 |
+
"\n",
|
104 |
+
" # Optionally add annotations only for the first point in the specified batch sizes\n",
|
105 |
+
" if batch_size in label_batch_sizes:\n",
|
106 |
+
" fig.add_annotation(\n",
|
107 |
+
" x=group['results_end_to_end_latency_s_mean'].iloc[0],\n",
|
108 |
+
" y=group['results_num_completed_requests_per_min'].iloc[0],\n",
|
109 |
+
" text=f'{batch_size[:-2].replace(\"nvidia-\", \"\")}',\n",
|
110 |
+
" showarrow=False,\n",
|
111 |
+
" ax=0,\n",
|
112 |
+
" # ay=90, # Offset to move the text down\n",
|
113 |
+
" xanchor='center',\n",
|
114 |
+
" yanchor='top'\n",
|
115 |
+
" )\n",
|
116 |
+
"\n",
|
117 |
+
"# Update layout for the figure\n",
|
118 |
+
"fig.update_layout(\n",
|
119 |
+
" title_text=\"Requests Throughput vs Latency by Batch Size\",\n",
|
120 |
+
" xaxis_title=\"End to End Latency (seconds)\",\n",
|
121 |
+
" yaxis_title=\"Requests/min\",\n",
|
122 |
+
" showlegend=True,\n",
|
123 |
+
")\n",
|
124 |
+
"\n",
|
125 |
+
"# Show the figure\n",
|
126 |
+
"fig.show()"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": null,
|
132 |
+
"id": "9d2719fe-b0b5-400f-83a0-7eaffd8f2254",
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": []
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "code",
|
139 |
+
"execution_count": null,
|
140 |
+
"id": "b2472ada-8215-45cb-9efb-b094f02bb416",
|
141 |
+
"metadata": {},
|
142 |
+
"outputs": [],
|
143 |
+
"source": []
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"metadata": {
|
147 |
+
"kernelspec": {
|
148 |
+
"display_name": "Python 3 (ipykernel)",
|
149 |
+
"language": "python",
|
150 |
+
"name": "python3"
|
151 |
+
},
|
152 |
+
"language_info": {
|
153 |
+
"codemirror_mode": {
|
154 |
+
"name": "ipython",
|
155 |
+
"version": 3
|
156 |
+
},
|
157 |
+
"file_extension": ".py",
|
158 |
+
"mimetype": "text/x-python",
|
159 |
+
"name": "python",
|
160 |
+
"nbconvert_exporter": "python",
|
161 |
+
"pygments_lexer": "ipython3",
|
162 |
+
"version": "3.10.14"
|
163 |
+
}
|
164 |
+
},
|
165 |
+
"nbformat": 4,
|
166 |
+
"nbformat_minor": 5
|
167 |
+
}
|