derek33125
commited on
Commit
•
146cc0e
1
Parent(s):
d4b7138
Updating model based on GLM4 update
Browse filesUpdating the model to the newest version of GLM4-Chat, follow the new requirements in their page
- config.json +19 -24
- generation_config.json +4 -4
- modeling_chatglm.py +216 -290
- tokenization_chatglm.py +96 -96
- tokenizer_config.json +11 -25
config.json
CHANGED
@@ -1,50 +1,45 @@
|
|
1 |
{
|
2 |
"_name_or_path": "THUDM/glm-4-9b-chat",
|
3 |
-
"
|
4 |
-
"add_qkv_bias": true,
|
5 |
-
"apply_query_key_layer_scaling": true,
|
6 |
-
"apply_residual_connection_post_layernorm": false,
|
7 |
"architectures": [
|
8 |
-
"
|
9 |
],
|
10 |
-
"attention_dropout": 0.0,
|
11 |
-
"attention_softmax_in_fp32": true,
|
12 |
"auto_map": {
|
13 |
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
14 |
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
15 |
-
"AutoModelForCausalLM": "
|
16 |
-
"AutoModelForSeq2SeqLM": "
|
17 |
-
"AutoModelForSequenceClassification": "
|
18 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"bias_dropout_fusion": true,
|
20 |
-
"classifier_dropout": null,
|
21 |
-
"eos_token_id": [
|
22 |
-
151329,
|
23 |
-
151336,
|
24 |
-
151338
|
25 |
-
],
|
26 |
"ffn_hidden_size": 13696,
|
27 |
"fp32_residual_connection": false,
|
28 |
"hidden_dropout": 0.0,
|
29 |
"hidden_size": 4096,
|
30 |
"kv_channels": 128,
|
31 |
"layernorm_epsilon": 1.5625e-07,
|
32 |
-
"model_type": "chatglm",
|
33 |
"multi_query_attention": true,
|
34 |
"multi_query_group_num": 2,
|
35 |
"num_attention_heads": 32,
|
36 |
"num_hidden_layers": 40,
|
37 |
"num_layers": 40,
|
|
|
38 |
"original_rope": true,
|
39 |
-
"pad_token_id": 151329,
|
40 |
"padded_vocab_size": 151552,
|
41 |
"post_layer_norm": true,
|
42 |
"rmsnorm": true,
|
43 |
-
"rope_ratio": 500,
|
44 |
"seq_length": 131072,
|
45 |
-
"tie_word_embeddings": false,
|
46 |
-
"torch_dtype": "bfloat16",
|
47 |
-
"transformers_version": "4.41.2",
|
48 |
"use_cache": true,
|
49 |
-
"
|
50 |
-
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
"_name_or_path": "THUDM/glm-4-9b-chat",
|
3 |
+
"model_type": "chatglm",
|
|
|
|
|
|
|
4 |
"architectures": [
|
5 |
+
"ChatGLMModel"
|
6 |
],
|
|
|
|
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
9 |
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
10 |
+
"AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
11 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
12 |
+
"AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
|
13 |
},
|
14 |
+
"add_bias_linear": false,
|
15 |
+
"add_qkv_bias": true,
|
16 |
+
"apply_query_key_layer_scaling": true,
|
17 |
+
"apply_residual_connection_post_layernorm": false,
|
18 |
+
"attention_dropout": 0.0,
|
19 |
+
"attention_softmax_in_fp32": true,
|
20 |
+
"attn_implementation": "sdpa",
|
21 |
"bias_dropout_fusion": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"ffn_hidden_size": 13696,
|
23 |
"fp32_residual_connection": false,
|
24 |
"hidden_dropout": 0.0,
|
25 |
"hidden_size": 4096,
|
26 |
"kv_channels": 128,
|
27 |
"layernorm_epsilon": 1.5625e-07,
|
|
|
28 |
"multi_query_attention": true,
|
29 |
"multi_query_group_num": 2,
|
30 |
"num_attention_heads": 32,
|
31 |
"num_hidden_layers": 40,
|
32 |
"num_layers": 40,
|
33 |
+
"rope_ratio": 500,
|
34 |
"original_rope": true,
|
|
|
35 |
"padded_vocab_size": 151552,
|
36 |
"post_layer_norm": true,
|
37 |
"rmsnorm": true,
|
|
|
38 |
"seq_length": 131072,
|
|
|
|
|
|
|
39 |
"use_cache": true,
|
40 |
+
"torch_dtype": "bfloat16",
|
41 |
+
"transformers_version": "4.42.4",
|
42 |
+
"tie_word_embeddings": false,
|
43 |
+
"eos_token_id": [151329, 151336, 151338],
|
44 |
+
"pad_token_id": 151329
|
45 |
+
}
|
generation_config.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
-
"do_sample": true,
|
3 |
"eos_token_id": [
|
4 |
151329,
|
5 |
151336,
|
6 |
151338
|
7 |
],
|
8 |
-
"max_length": 128000,
|
9 |
"pad_token_id": 151329,
|
|
|
10 |
"temperature": 0.8,
|
|
|
11 |
"top_p": 0.8,
|
12 |
-
"transformers_version": "4.
|
13 |
-
}
|
|
|
1 |
{
|
|
|
2 |
"eos_token_id": [
|
3 |
151329,
|
4 |
151336,
|
5 |
151338
|
6 |
],
|
|
|
7 |
"pad_token_id": 151329,
|
8 |
+
"do_sample": true,
|
9 |
"temperature": 0.8,
|
10 |
+
"max_length": 128000,
|
11 |
"top_p": 0.8,
|
12 |
+
"transformers_version": "4.42.4"
|
13 |
+
}
|
modeling_chatglm.py
CHANGED
@@ -1,19 +1,14 @@
|
|
1 |
""" PyTorch ChatGLM model. """
|
2 |
-
|
3 |
import math
|
4 |
-
import copy
|
5 |
-
import warnings
|
6 |
-
import re
|
7 |
import sys
|
8 |
-
|
9 |
import torch
|
10 |
import torch.utils.checkpoint
|
11 |
import torch.nn.functional as F
|
12 |
from torch import nn
|
13 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
14 |
from torch.nn.utils import skip_init
|
15 |
-
from typing import Optional, Tuple, Union, List,
|
16 |
-
from copy import deepcopy
|
17 |
|
18 |
from transformers.modeling_outputs import (
|
19 |
BaseModelOutputWithPast,
|
@@ -23,10 +18,19 @@ from transformers.modeling_outputs import (
|
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
from transformers.utils import logging, is_torch_npu_available
|
25 |
from transformers.generation.logits_process import LogitsProcessor
|
26 |
-
from transformers.generation.utils import
|
27 |
|
28 |
from .configuration_chatglm import ChatGLMConfig
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# flags required to enable jit fusion kernels
|
31 |
|
32 |
if sys.platform != 'darwin' and not is_torch_npu_available():
|
@@ -40,6 +44,7 @@ logger = logging.get_logger(__name__)
|
|
40 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
41 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
42 |
|
|
|
43 |
def default_init(cls, *args, **kwargs):
|
44 |
return cls(*args, **kwargs)
|
45 |
|
@@ -159,12 +164,13 @@ class RMSNorm(torch.nn.Module):
|
|
159 |
class CoreAttention(torch.nn.Module):
|
160 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
161 |
super(CoreAttention, self).__init__()
|
162 |
-
|
163 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
164 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
165 |
if self.apply_query_key_layer_scaling:
|
166 |
self.attention_softmax_in_fp32 = True
|
167 |
self.layer_number = max(1, layer_number)
|
|
|
168 |
|
169 |
projection_size = config.kv_channels * config.num_attention_heads
|
170 |
|
@@ -183,91 +189,199 @@ class CoreAttention(torch.nn.Module):
|
|
183 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
184 |
|
185 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
else:
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
# [b, np, sq, sk]
|
203 |
-
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
)
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
# attention scores and attention mask [b, np, sq, sk]
|
233 |
-
if self.attention_softmax_in_fp32:
|
234 |
-
attention_scores = attention_scores.float()
|
235 |
-
if self.coeff is not None:
|
236 |
-
attention_scores = attention_scores * self.coeff
|
237 |
-
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
238 |
-
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
239 |
-
device=attention_scores.device, dtype=torch.bool)
|
240 |
-
attention_mask.tril_()
|
241 |
-
attention_mask = ~attention_mask
|
242 |
-
if attention_mask is not None:
|
243 |
-
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
244 |
-
attention_probs = F.softmax(attention_scores, dim=-1)
|
245 |
-
attention_probs = attention_probs.type_as(value_layer)
|
246 |
-
|
247 |
-
# This is actually dropping out entire tokens to attend to, which might
|
248 |
-
# seem a bit unusual, but is taken from the original Transformer paper.
|
249 |
-
attention_probs = self.attention_dropout(attention_probs)
|
250 |
-
|
251 |
-
# query layer shape: [b * np, sq, hn]
|
252 |
-
# value layer shape: [b, np, sk, hn]
|
253 |
-
# attention shape: [b, np, sq, sk]
|
254 |
-
# context layer shape: [b, np, sq, hn]
|
255 |
-
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
256 |
-
# change view [b * np, sk, hn]
|
257 |
-
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
258 |
-
# change view [b * np, sq, sk]
|
259 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
260 |
-
# matmul: [b * np, sq, hn]
|
261 |
-
context_layer = torch.bmm(attention_probs, value_layer)
|
262 |
-
# change view [b, np, sq, hn]
|
263 |
-
context_layer = context_layer.view(*output_size)
|
264 |
-
# [b, np, sq, hn] --> [b, sq, np, hn]
|
265 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
266 |
-
# [b, sq, np, hn] --> [b, sq, hp]
|
267 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
268 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
269 |
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
|
273 |
class SelfAttention(torch.nn.Module):
|
@@ -299,7 +413,7 @@ class SelfAttention(torch.nn.Module):
|
|
299 |
device=device, **_config_to_kwargs(config)
|
300 |
)
|
301 |
|
302 |
-
self.core_attention =
|
303 |
|
304 |
# Output.
|
305 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
@@ -378,7 +492,8 @@ class SelfAttention(torch.nn.Module):
|
|
378 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
379 |
if use_cache:
|
380 |
if kv_cache is None:
|
381 |
-
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
|
|
382 |
else:
|
383 |
kv_cache = (key_layer, value_layer)
|
384 |
else:
|
@@ -644,12 +759,18 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
644 |
config_class = ChatGLMConfig
|
645 |
base_model_prefix = "transformer"
|
646 |
_no_split_modules = ["GLMBlock"]
|
|
|
|
|
647 |
|
648 |
def _init_weights(self, module: nn.Module):
|
649 |
"""Initialize the weights."""
|
650 |
return
|
651 |
|
652 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
|
|
|
|
|
|
|
|
653 |
batch_size, seq_length = input_ids.shape
|
654 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
655 |
full_attention_mask.tril_()
|
@@ -672,11 +793,6 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
672 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
673 |
return position_ids
|
674 |
|
675 |
-
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
676 |
-
if not self.supports_gradient_checkpointing:
|
677 |
-
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
|
678 |
-
|
679 |
-
|
680 |
class Embedding(torch.nn.Module):
|
681 |
"""Language model embeddings."""
|
682 |
|
@@ -724,7 +840,8 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
724 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
725 |
)
|
726 |
|
727 |
-
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
|
|
728 |
device=device, dtype=config.torch_dtype)
|
729 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
730 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
@@ -745,6 +862,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
745 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
746 |
inputs_embeds: Optional[torch.Tensor] = None,
|
747 |
use_cache: Optional[bool] = None,
|
|
|
748 |
output_hidden_states: Optional[bool] = None,
|
749 |
return_dict: Optional[bool] = None,
|
750 |
):
|
@@ -809,9 +927,10 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
809 |
standardize_cache_format: bool = False,
|
810 |
) -> Dict[str, Any]:
|
811 |
# update past_key_values
|
812 |
-
|
813 |
outputs, standardize_cache_format=standardize_cache_format
|
814 |
)
|
|
|
815 |
|
816 |
# update attention mask
|
817 |
if "attention_mask" in model_kwargs:
|
@@ -936,201 +1055,6 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
936 |
for layer_past in past
|
937 |
)
|
938 |
|
939 |
-
def process_response(self, output, history):
|
940 |
-
content = ""
|
941 |
-
history = deepcopy(history)
|
942 |
-
for response in output.split("<|assistant|>"):
|
943 |
-
if "\n" in response:
|
944 |
-
metadata, content = response.split("\n", maxsplit=1)
|
945 |
-
else:
|
946 |
-
metadata, content = "", response
|
947 |
-
if not metadata.strip():
|
948 |
-
content = content.strip()
|
949 |
-
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
950 |
-
content = content.replace("[[训练时间]]", "2023年")
|
951 |
-
else:
|
952 |
-
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
953 |
-
if history[0]["role"] == "system" and "tools" in history[0]:
|
954 |
-
parameters = json.loads(content)
|
955 |
-
content = {"name": metadata.strip(), "parameters": parameters}
|
956 |
-
else:
|
957 |
-
content = {"name": metadata.strip(), "content": content}
|
958 |
-
return content, history
|
959 |
-
|
960 |
-
@torch.inference_mode()
|
961 |
-
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
962 |
-
max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
963 |
-
**kwargs):
|
964 |
-
if history is None:
|
965 |
-
history = []
|
966 |
-
if logits_processor is None:
|
967 |
-
logits_processor = LogitsProcessorList()
|
968 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
969 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
970 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
971 |
-
history.append({"role": role, "content": query})
|
972 |
-
inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=True,
|
973 |
-
return_tensors="pt", return_dict=True)
|
974 |
-
inputs = inputs.to(self.device)
|
975 |
-
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
976 |
-
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
977 |
-
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
|
978 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
979 |
-
response = tokenizer.decode(outputs)
|
980 |
-
response, history = self.process_response(response, history)
|
981 |
-
return response, history
|
982 |
-
|
983 |
-
@torch.inference_mode()
|
984 |
-
def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
985 |
-
past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
|
986 |
-
logits_processor=None, return_past_key_values=False, **kwargs):
|
987 |
-
if history is None:
|
988 |
-
history = []
|
989 |
-
if logits_processor is None:
|
990 |
-
logits_processor = LogitsProcessorList()
|
991 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
992 |
-
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
993 |
-
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
994 |
-
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
995 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
996 |
-
if past_key_values is None:
|
997 |
-
inputs = tokenizer.apply_chat_template(history + [{"role": role, "content": query}],
|
998 |
-
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
999 |
-
return_dict=True)
|
1000 |
-
else:
|
1001 |
-
inputs = tokenizer.apply_chat_template([{"role": role, "content": query}], add_special_tokens=False,
|
1002 |
-
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
1003 |
-
return_dict=True)
|
1004 |
-
inputs = inputs.to(self.device)
|
1005 |
-
if past_key_values is not None:
|
1006 |
-
past_length = past_key_values[0][0].shape[2]
|
1007 |
-
inputs.position_ids += past_length
|
1008 |
-
attention_mask = inputs.attention_mask
|
1009 |
-
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
1010 |
-
inputs['attention_mask'] = attention_mask
|
1011 |
-
history.append({"role": role, "content": query})
|
1012 |
-
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
1013 |
-
eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
|
1014 |
-
**gen_kwargs):
|
1015 |
-
if return_past_key_values:
|
1016 |
-
outputs, past_key_values = outputs
|
1017 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1018 |
-
response = tokenizer.decode(outputs)
|
1019 |
-
if response and response[-1] != "�":
|
1020 |
-
response, new_history = self.process_response(response, history)
|
1021 |
-
if return_past_key_values:
|
1022 |
-
yield response, new_history, past_key_values
|
1023 |
-
else:
|
1024 |
-
yield response, new_history
|
1025 |
-
|
1026 |
-
@torch.inference_mode()
|
1027 |
-
def stream_generate(
|
1028 |
-
self,
|
1029 |
-
input_ids,
|
1030 |
-
generation_config: Optional[GenerationConfig] = None,
|
1031 |
-
logits_processor: Optional[LogitsProcessorList] = None,
|
1032 |
-
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1033 |
-
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1034 |
-
return_past_key_values=False,
|
1035 |
-
**kwargs,
|
1036 |
-
):
|
1037 |
-
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1038 |
-
|
1039 |
-
if generation_config is None:
|
1040 |
-
generation_config = self.generation_config
|
1041 |
-
generation_config = copy.deepcopy(generation_config)
|
1042 |
-
model_kwargs = generation_config.update(**kwargs)
|
1043 |
-
model_kwargs["use_cache"] = generation_config.use_cache
|
1044 |
-
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1045 |
-
|
1046 |
-
if isinstance(eos_token_id, int):
|
1047 |
-
eos_token_id = [eos_token_id]
|
1048 |
-
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
1049 |
-
|
1050 |
-
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1051 |
-
if has_default_max_length and generation_config.max_new_tokens is None:
|
1052 |
-
warnings.warn(
|
1053 |
-
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1054 |
-
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1055 |
-
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1056 |
-
UserWarning,
|
1057 |
-
)
|
1058 |
-
elif generation_config.max_new_tokens is not None:
|
1059 |
-
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1060 |
-
if not has_default_max_length:
|
1061 |
-
logger.warn(
|
1062 |
-
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1063 |
-
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1064 |
-
"Please refer to the documentation for more information. "
|
1065 |
-
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1066 |
-
UserWarning,
|
1067 |
-
)
|
1068 |
-
|
1069 |
-
if input_ids_seq_length >= generation_config.max_length:
|
1070 |
-
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1071 |
-
logger.warning(
|
1072 |
-
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1073 |
-
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1074 |
-
" increasing `max_new_tokens`."
|
1075 |
-
)
|
1076 |
-
|
1077 |
-
# 2. Set generation parameters if not already defined
|
1078 |
-
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1079 |
-
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1080 |
-
|
1081 |
-
logits_processor = self._get_logits_processor(
|
1082 |
-
generation_config=generation_config,
|
1083 |
-
input_ids_seq_length=input_ids_seq_length,
|
1084 |
-
encoder_input_ids=input_ids,
|
1085 |
-
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1086 |
-
logits_processor=logits_processor,
|
1087 |
-
)
|
1088 |
-
|
1089 |
-
stopping_criteria = self._get_stopping_criteria(
|
1090 |
-
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1091 |
-
)
|
1092 |
-
logits_warper = self._get_logits_warper(generation_config)
|
1093 |
-
|
1094 |
-
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1095 |
-
scores = None
|
1096 |
-
while True:
|
1097 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1098 |
-
# forward pass to get next token
|
1099 |
-
outputs = self(
|
1100 |
-
**model_inputs,
|
1101 |
-
return_dict=True,
|
1102 |
-
output_attentions=False,
|
1103 |
-
output_hidden_states=False,
|
1104 |
-
)
|
1105 |
-
|
1106 |
-
next_token_logits = outputs.logits[:, -1, :]
|
1107 |
-
|
1108 |
-
# pre-process distribution
|
1109 |
-
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1110 |
-
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1111 |
-
|
1112 |
-
# sample
|
1113 |
-
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1114 |
-
if generation_config.do_sample:
|
1115 |
-
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1116 |
-
else:
|
1117 |
-
next_tokens = torch.argmax(probs, dim=-1)
|
1118 |
-
# update generated ids, model inputs, and length for next step
|
1119 |
-
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1120 |
-
model_kwargs = self._update_model_kwargs_for_generation(
|
1121 |
-
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1122 |
-
)
|
1123 |
-
unfinished_sequences = unfinished_sequences.mul(
|
1124 |
-
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
1125 |
-
)
|
1126 |
-
if return_past_key_values:
|
1127 |
-
yield input_ids, outputs.past_key_values
|
1128 |
-
else:
|
1129 |
-
yield input_ids
|
1130 |
-
# stop when each sentence is finished, or if we exceed the maximum length
|
1131 |
-
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1132 |
-
break
|
1133 |
-
|
1134 |
|
1135 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
1136 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
@@ -1139,7 +1063,7 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1139 |
self.num_labels = config.num_labels
|
1140 |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
1141 |
|
1142 |
-
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=
|
1143 |
if config.classifier_dropout is not None:
|
1144 |
self.dropout = nn.Dropout(config.classifier_dropout)
|
1145 |
else:
|
@@ -1156,6 +1080,7 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1156 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1157 |
labels: Optional[torch.LongTensor] = None,
|
1158 |
use_cache: Optional[bool] = None,
|
|
|
1159 |
output_hidden_states: Optional[bool] = None,
|
1160 |
return_dict: Optional[bool] = None,
|
1161 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
@@ -1169,6 +1094,7 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1169 |
past_key_values=past_key_values,
|
1170 |
inputs_embeds=inputs_embeds,
|
1171 |
use_cache=use_cache,
|
|
|
1172 |
output_hidden_states=output_hidden_states,
|
1173 |
return_dict=return_dict,
|
1174 |
)
|
|
|
1 |
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
import math
|
|
|
|
|
|
|
4 |
import sys
|
|
|
5 |
import torch
|
6 |
import torch.utils.checkpoint
|
7 |
import torch.nn.functional as F
|
8 |
from torch import nn
|
9 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
10 |
from torch.nn.utils import skip_init
|
11 |
+
from typing import Optional, Tuple, Union, List, Dict, Any
|
|
|
12 |
|
13 |
from transformers.modeling_outputs import (
|
14 |
BaseModelOutputWithPast,
|
|
|
18 |
from transformers.modeling_utils import PreTrainedModel
|
19 |
from transformers.utils import logging, is_torch_npu_available
|
20 |
from transformers.generation.logits_process import LogitsProcessor
|
21 |
+
from transformers.generation.utils import ModelOutput
|
22 |
|
23 |
from .configuration_chatglm import ChatGLMConfig
|
24 |
|
25 |
+
try:
|
26 |
+
from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
|
27 |
+
|
28 |
+
if is_flash_attn_2_available():
|
29 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
30 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
|
34 |
# flags required to enable jit fusion kernels
|
35 |
|
36 |
if sys.platform != 'darwin' and not is_torch_npu_available():
|
|
|
44 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
45 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
46 |
|
47 |
+
|
48 |
def default_init(cls, *args, **kwargs):
|
49 |
return cls(*args, **kwargs)
|
50 |
|
|
|
164 |
class CoreAttention(torch.nn.Module):
|
165 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
166 |
super(CoreAttention, self).__init__()
|
167 |
+
self.config = config
|
168 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
169 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
170 |
if self.apply_query_key_layer_scaling:
|
171 |
self.attention_softmax_in_fp32 = True
|
172 |
self.layer_number = max(1, layer_number)
|
173 |
+
self.is_causal = True
|
174 |
|
175 |
projection_size = config.kv_channels * config.num_attention_heads
|
176 |
|
|
|
189 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
190 |
|
191 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
192 |
+
# [b, np, sq, sk]
|
193 |
+
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
194 |
+
|
195 |
+
# [b, np, sq, hn] -> [b * np, sq, hn]
|
196 |
+
query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
|
197 |
+
# [b, np, sk, hn] -> [b * np, sk, hn]
|
198 |
+
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
199 |
+
|
200 |
+
# preallocting input tensor: [b * np, sq, sk]
|
201 |
+
matmul_input_buffer = torch.empty(
|
202 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
203 |
+
device=query_layer.device
|
204 |
+
)
|
205 |
+
|
206 |
+
# Raw attention scores. [b * np, sq, sk]
|
207 |
+
matmul_result = torch.baddbmm(
|
208 |
+
matmul_input_buffer,
|
209 |
+
query_layer, # [b * np, sq, hn]
|
210 |
+
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
211 |
+
beta=0.0,
|
212 |
+
alpha=(1.0 / self.norm_factor),
|
213 |
+
)
|
214 |
+
|
215 |
+
# change view to [b, np, sq, sk]
|
216 |
+
attention_scores = matmul_result.view(*output_size)
|
217 |
+
|
218 |
+
# ===========================
|
219 |
+
# Attention probs and dropout
|
220 |
+
# ===========================
|
221 |
+
|
222 |
+
# attention scores and attention mask [b, np, sq, sk]
|
223 |
+
if self.attention_softmax_in_fp32:
|
224 |
+
attention_scores = attention_scores.float()
|
225 |
+
if self.coeff is not None:
|
226 |
+
attention_scores = attention_scores * self.coeff
|
227 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
228 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
229 |
+
device=attention_scores.device, dtype=torch.bool)
|
230 |
+
attention_mask.tril_()
|
231 |
+
attention_mask = ~attention_mask
|
232 |
+
if attention_mask is not None:
|
233 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
234 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
235 |
+
attention_probs = attention_probs.type_as(value_layer)
|
236 |
+
|
237 |
+
# This is actually dropping out entire tokens to attend to, which might
|
238 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
239 |
+
attention_probs = self.attention_dropout(attention_probs)
|
240 |
+
|
241 |
+
# query layer shape: [b * np, sq, hn]
|
242 |
+
# value layer shape: [b, np, sk, hn]
|
243 |
+
# attention shape: [b, np, sq, sk]
|
244 |
+
# context layer shape: [b, np, sq, hn]
|
245 |
+
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
246 |
+
# change view [b * np, sk, hn]
|
247 |
+
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
248 |
+
# change view [b * np, sq, sk]
|
249 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
250 |
+
# matmul: [b * np, sq, hn]
|
251 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
252 |
+
# change view [b, np, sq, hn]
|
253 |
+
context_layer = context_layer.view(*output_size)
|
254 |
+
# [b, np, sq, hn] --> [b, sq, np, hn]
|
255 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
256 |
+
# [b, sq, np, hn] --> [b, sq, hp]
|
257 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
258 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
259 |
+
|
260 |
+
return context_layer
|
261 |
+
|
262 |
+
|
263 |
+
class SdpaAttention(CoreAttention):
|
264 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
265 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
266 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
267 |
+
is_causal=True,
|
268 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
269 |
else:
|
270 |
+
if attention_mask is not None:
|
271 |
+
attention_mask = ~attention_mask
|
272 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
273 |
+
attention_mask,
|
274 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
275 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
276 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
277 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
278 |
+
return context_layer
|
279 |
+
|
280 |
+
|
281 |
+
def _get_unpad_data(attention_mask):
|
282 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
283 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
284 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
285 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
286 |
+
return (
|
287 |
+
indices,
|
288 |
+
cu_seqlens,
|
289 |
+
max_seqlen_in_batch,
|
290 |
+
)
|
291 |
|
|
|
|
|
292 |
|
293 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
|
294 |
+
class FlashAttention2(CoreAttention):
|
295 |
+
def __init__(self, *args, **kwargs):
|
296 |
+
super().__init__(*args, **kwargs)
|
297 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
298 |
|
299 |
+
def forward(self, query_states, key_states, value_states, attention_mask):
|
300 |
+
query_states = query_states.transpose(1, 2)
|
301 |
+
key_states = key_states.transpose(1, 2)
|
302 |
+
value_states = value_states.transpose(1, 2)
|
303 |
+
batch_size, query_length = query_states.shape[:2]
|
304 |
+
if not self._flash_attn_uses_top_left_mask:
|
305 |
+
causal = self.is_causal
|
306 |
+
else:
|
307 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
308 |
+
causal = self.is_causal and query_length != 1
|
309 |
+
dropout = self.config.attention_dropout if self.training else 0.0
|
310 |
+
# Contains at least one padding token in the sequence
|
311 |
+
if attention_mask is not None:
|
312 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
313 |
+
query_states, key_states, value_states, attention_mask, query_length
|
314 |
)
|
315 |
|
316 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
317 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
318 |
+
|
319 |
+
attn_output_unpad = flash_attn_varlen_func(
|
320 |
+
query_states,
|
321 |
+
key_states,
|
322 |
+
value_states,
|
323 |
+
cu_seqlens_q=cu_seqlens_q,
|
324 |
+
cu_seqlens_k=cu_seqlens_k,
|
325 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
326 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
327 |
+
dropout_p=dropout,
|
328 |
+
softmax_scale=None,
|
329 |
+
causal=causal,
|
330 |
)
|
331 |
|
332 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
333 |
+
else:
|
334 |
+
attn_output = flash_attn_func(
|
335 |
+
query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
|
336 |
+
)
|
337 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
|
338 |
+
return attn_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
341 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
342 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
343 |
+
|
344 |
+
key_layer = index_first_axis(
|
345 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
346 |
+
)
|
347 |
+
value_layer = index_first_axis(
|
348 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
349 |
+
)
|
350 |
+
if query_length == kv_seq_len:
|
351 |
+
query_layer = index_first_axis(
|
352 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
|
353 |
+
indices_k
|
354 |
+
)
|
355 |
+
cu_seqlens_q = cu_seqlens_k
|
356 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
357 |
+
indices_q = indices_k
|
358 |
+
elif query_length == 1:
|
359 |
+
max_seqlen_in_batch_q = 1
|
360 |
+
cu_seqlens_q = torch.arange(
|
361 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
362 |
+
) # There is a memcpy here, that is very bad.
|
363 |
+
indices_q = cu_seqlens_q[:-1]
|
364 |
+
query_layer = query_layer.squeeze(1)
|
365 |
+
else:
|
366 |
+
# The -q_len: slice assumes left padding.
|
367 |
+
attention_mask = attention_mask[:, -query_length:]
|
368 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
369 |
+
|
370 |
+
return (
|
371 |
+
query_layer,
|
372 |
+
key_layer,
|
373 |
+
value_layer,
|
374 |
+
indices_q,
|
375 |
+
(cu_seqlens_q, cu_seqlens_k),
|
376 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
377 |
+
)
|
378 |
+
|
379 |
+
|
380 |
+
CORE_ATTENTION_CLASSES = {
|
381 |
+
"eager": CoreAttention,
|
382 |
+
"sdpa": SdpaAttention,
|
383 |
+
"flash_attention_2": FlashAttention2
|
384 |
+
}
|
385 |
|
386 |
|
387 |
class SelfAttention(torch.nn.Module):
|
|
|
413 |
device=device, **_config_to_kwargs(config)
|
414 |
)
|
415 |
|
416 |
+
self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
|
417 |
|
418 |
# Output.
|
419 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
|
|
492 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
493 |
if use_cache:
|
494 |
if kv_cache is None:
|
495 |
+
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
496 |
+
dim=1)
|
497 |
else:
|
498 |
kv_cache = (key_layer, value_layer)
|
499 |
else:
|
|
|
759 |
config_class = ChatGLMConfig
|
760 |
base_model_prefix = "transformer"
|
761 |
_no_split_modules = ["GLMBlock"]
|
762 |
+
_supports_flash_attn_2 = True
|
763 |
+
_supports_sdpa = True
|
764 |
|
765 |
def _init_weights(self, module: nn.Module):
|
766 |
"""Initialize the weights."""
|
767 |
return
|
768 |
|
769 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
770 |
+
if self.config._attn_implementation == "flash_attention_2":
|
771 |
+
if padding_mask is not None and not padding_mask.all():
|
772 |
+
return padding_mask
|
773 |
+
return None
|
774 |
batch_size, seq_length = input_ids.shape
|
775 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
776 |
full_attention_mask.tril_()
|
|
|
793 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
794 |
return position_ids
|
795 |
|
|
|
|
|
|
|
|
|
|
|
796 |
class Embedding(torch.nn.Module):
|
797 |
"""Language model embeddings."""
|
798 |
|
|
|
840 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
841 |
)
|
842 |
|
843 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
844 |
+
original_impl=config.original_rope,
|
845 |
device=device, dtype=config.torch_dtype)
|
846 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
847 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
|
|
862 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
863 |
inputs_embeds: Optional[torch.Tensor] = None,
|
864 |
use_cache: Optional[bool] = None,
|
865 |
+
output_attentions: Optional[bool] = None,
|
866 |
output_hidden_states: Optional[bool] = None,
|
867 |
return_dict: Optional[bool] = None,
|
868 |
):
|
|
|
927 |
standardize_cache_format: bool = False,
|
928 |
) -> Dict[str, Any]:
|
929 |
# update past_key_values
|
930 |
+
cache_name, cache = self._extract_past_from_model_output(
|
931 |
outputs, standardize_cache_format=standardize_cache_format
|
932 |
)
|
933 |
+
model_kwargs[cache_name] = cache
|
934 |
|
935 |
# update attention mask
|
936 |
if "attention_mask" in model_kwargs:
|
|
|
1055 |
for layer_past in past
|
1056 |
)
|
1057 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1058 |
|
1059 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
1060 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
|
|
1063 |
self.num_labels = config.num_labels
|
1064 |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
1065 |
|
1066 |
+
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=config.torch_dtype)
|
1067 |
if config.classifier_dropout is not None:
|
1068 |
self.dropout = nn.Dropout(config.classifier_dropout)
|
1069 |
else:
|
|
|
1080 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1081 |
labels: Optional[torch.LongTensor] = None,
|
1082 |
use_cache: Optional[bool] = None,
|
1083 |
+
output_attentions: Optional[bool] = None,
|
1084 |
output_hidden_states: Optional[bool] = None,
|
1085 |
return_dict: Optional[bool] = None,
|
1086 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
|
|
1094 |
past_key_values=past_key_values,
|
1095 |
inputs_embeds=inputs_embeds,
|
1096 |
use_cache=use_cache,
|
1097 |
+
output_attentions=output_attentions,
|
1098 |
output_hidden_states=output_hidden_states,
|
1099 |
return_dict=return_dict,
|
1100 |
)
|
tokenization_chatglm.py
CHANGED
@@ -63,22 +63,22 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
63 |
vocab.update(self.added_tokens_encoder)
|
64 |
return vocab
|
65 |
|
66 |
-
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
67 |
"""
|
68 |
Converts a sequence of tokens in a single string.
|
69 |
"""
|
70 |
text = ""
|
71 |
temp = b""
|
72 |
for t in tokens:
|
|
|
|
|
73 |
if isinstance(t, str):
|
74 |
if temp:
|
75 |
text += temp.decode("utf-8", errors="replace")
|
76 |
-
temp = b""
|
77 |
-
text += t
|
78 |
elif isinstance(t, bytes):
|
79 |
temp += t
|
80 |
else:
|
81 |
-
raise TypeError("token should only be of type
|
82 |
if temp:
|
83 |
text += temp.decode("utf-8", errors="replace")
|
84 |
return text
|
@@ -141,98 +141,98 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
141 |
else:
|
142 |
return str(f"<|{role}|>{metadata}\n{message}")
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
|
237 |
def build_inputs_with_special_tokens(
|
238 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
|
63 |
vocab.update(self.added_tokens_encoder)
|
64 |
return vocab
|
65 |
|
66 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
|
67 |
"""
|
68 |
Converts a sequence of tokens in a single string.
|
69 |
"""
|
70 |
text = ""
|
71 |
temp = b""
|
72 |
for t in tokens:
|
73 |
+
if isinstance(t, int):
|
74 |
+
t = chr(t)
|
75 |
if isinstance(t, str):
|
76 |
if temp:
|
77 |
text += temp.decode("utf-8", errors="replace")
|
|
|
|
|
78 |
elif isinstance(t, bytes):
|
79 |
temp += t
|
80 |
else:
|
81 |
+
raise TypeError("token should only be of type int, bytes or str")
|
82 |
if temp:
|
83 |
text += temp.decode("utf-8", errors="replace")
|
84 |
return text
|
|
|
141 |
else:
|
142 |
return str(f"<|{role}|>{metadata}\n{message}")
|
143 |
|
144 |
+
# Use Jinja Template in tokenizer_config.json
|
145 |
+
# def apply_chat_template(
|
146 |
+
# self,
|
147 |
+
# conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
|
148 |
+
# add_generation_prompt: bool = False,
|
149 |
+
# tokenize: bool = True,
|
150 |
+
# padding: bool = False,
|
151 |
+
# truncation: bool = False,
|
152 |
+
# max_length: Optional[int] = None,
|
153 |
+
# return_tensors: Optional[Union[str, TensorType]] = None,
|
154 |
+
# return_dict: bool = False,
|
155 |
+
# tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
156 |
+
# add_special_tokens: bool = True,
|
157 |
+
# **kwargs,
|
158 |
+
# ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
|
159 |
+
#
|
160 |
+
# if return_dict and not tokenize:
|
161 |
+
# raise ValueError(
|
162 |
+
# "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
|
163 |
+
# "of tokenizer outputs to return."
|
164 |
+
# )
|
165 |
+
#
|
166 |
+
# def handle_single_conversation(conversation):
|
167 |
+
# input_ids = self.get_prefix_tokens() if add_special_tokens else []
|
168 |
+
# input_message = "[gMASK]<sop>" if add_special_tokens else ""
|
169 |
+
# for item in conversation:
|
170 |
+
# if item.get("tools"):
|
171 |
+
# tools = item["tools"]
|
172 |
+
# content = "你是一个名为 GhatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
|
173 |
+
# content += "\n\n# 可用工具"
|
174 |
+
# for tool in tools:
|
175 |
+
# if tool["type"] == "function":
|
176 |
+
# function = tool["function"]
|
177 |
+
# content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
|
178 |
+
# content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
|
179 |
+
# elif tool["type"] == "python":
|
180 |
+
# content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` ���行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
|
181 |
+
# elif tool["type"] == "simple_browser":
|
182 |
+
# content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
|
183 |
+
# elif tool["type"] == "cogview":
|
184 |
+
# content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
|
185 |
+
# else:
|
186 |
+
# raise NotImplementedError(f"Unknown tool type {tool['type']}")
|
187 |
+
# input = self.build_single_message("system", "", content, tokenize=tokenize)
|
188 |
+
# if tokenize:
|
189 |
+
# input_ids.extend(input)
|
190 |
+
# else:
|
191 |
+
# input_message += input
|
192 |
+
# if item["content"]:
|
193 |
+
# input = self.build_single_message(
|
194 |
+
# item["role"],
|
195 |
+
# item.get("metadata", ""),
|
196 |
+
# item["content"],
|
197 |
+
# tokenize=tokenize
|
198 |
+
# )
|
199 |
+
# if tokenize:
|
200 |
+
# input_ids.extend(input)
|
201 |
+
# else:
|
202 |
+
# input_message += input
|
203 |
+
# if add_generation_prompt:
|
204 |
+
# if tokenize:
|
205 |
+
# input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
|
206 |
+
# else:
|
207 |
+
# input_message += "<|assistant|>"
|
208 |
+
# return input_ids if tokenize else input_message
|
209 |
+
#
|
210 |
+
# # Main logic to handle different conversation formats
|
211 |
+
# if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
|
212 |
+
# result = handle_single_conversation(conversation)
|
213 |
+
# elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
|
214 |
+
# result = [handle_single_conversation(c) for c in conversation]
|
215 |
+
# elif hasattr(conversation, "messages"):
|
216 |
+
# result = handle_single_conversation(conversation.messages)
|
217 |
+
# else:
|
218 |
+
# raise ValueError("Invalid conversation format")
|
219 |
+
#
|
220 |
+
# if tokenize:
|
221 |
+
# output = self.batch_encode_plus(
|
222 |
+
# [result] if isinstance(result[0], int) else result,
|
223 |
+
# padding=padding,
|
224 |
+
# truncation=truncation,
|
225 |
+
# max_length=max_length,
|
226 |
+
# return_tensors=return_tensors,
|
227 |
+
# is_split_into_words=True,
|
228 |
+
# add_special_tokens=False
|
229 |
+
# )
|
230 |
+
# if return_dict:
|
231 |
+
# return output
|
232 |
+
# else:
|
233 |
+
# return output["input_ids"]
|
234 |
+
# else:
|
235 |
+
# return result
|
236 |
|
237 |
def build_inputs_with_special_tokens(
|
238 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
tokenizer_config.json
CHANGED
@@ -1,4 +1,10 @@
|
|
1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"added_tokens_decoder": {
|
3 |
"151329": {
|
4 |
"content": "<|endoftext|>",
|
@@ -113,36 +119,16 @@
|
|
113 |
"special": true
|
114 |
}
|
115 |
},
|
116 |
-
"additional_special_tokens": [
|
117 |
-
|
118 |
-
|
119 |
-
"[gMASK]",
|
120 |
-
"[sMASK]",
|
121 |
-
"<sop>",
|
122 |
-
"<eop>",
|
123 |
-
"<|system|>",
|
124 |
-
"<|user|>",
|
125 |
-
"<|assistant|>",
|
126 |
-
"<|observation|>",
|
127 |
-
"<|begin_of_image|>",
|
128 |
-
"<|end_of_image|>",
|
129 |
-
"<|begin_of_video|>",
|
130 |
-
"<|end_of_video|>"
|
131 |
-
],
|
132 |
-
"auto_map": {
|
133 |
-
"AutoTokenizer": [
|
134 |
-
"tokenization_chatglm.ChatGLM4Tokenizer",
|
135 |
-
null
|
136 |
-
]
|
137 |
-
},
|
138 |
-
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{{ '[gMASK]<sop>' + system_message }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|assistant|>' }}{% elif message['role'] == 'assistant' %}{{ '\n' + content }}{% endif %}{% endfor %}",
|
139 |
"clean_up_tokenization_spaces": false,
|
|
|
140 |
"do_lower_case": false,
|
141 |
"eos_token": "<|endoftext|>",
|
142 |
-
"model_max_length": 128000,
|
143 |
"pad_token": "<|endoftext|>",
|
|
|
144 |
"padding_side": "left",
|
145 |
"remove_space": false,
|
146 |
-
"split_special_tokens": false,
|
147 |
"tokenizer_class": "ChatGLM4Tokenizer"
|
148 |
}
|
|
|
1 |
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_chatglm.ChatGLM4Tokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
"added_tokens_decoder": {
|
9 |
"151329": {
|
10 |
"content": "<|endoftext|>",
|
|
|
119 |
"special": true
|
120 |
}
|
121 |
},
|
122 |
+
"additional_special_tokens": ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
|
123 |
+
"<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
|
124 |
+
"<|begin_of_video|>", "<|end_of_video|>"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
"clean_up_tokenization_spaces": false,
|
126 |
+
"chat_template": "[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>\n你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}{% if tool['type'] == 'function' %}\n\n## {{ tool['function']['name'] }}\n\n{{ tool['function'] | tojson(indent=4) }}\n在调用上述函数时,请使用 Json 格式表示调用的参数。{% elif tool['type'] == 'python' %}\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。{% elif tool['type'] == 'simple_browser' %}\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。{% elif tool['type'] == 'cogview' %}\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。{% endif %}{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}\n{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
|
127 |
"do_lower_case": false,
|
128 |
"eos_token": "<|endoftext|>",
|
|
|
129 |
"pad_token": "<|endoftext|>",
|
130 |
+
"model_max_length": 128000,
|
131 |
"padding_side": "left",
|
132 |
"remove_space": false,
|
|
|
133 |
"tokenizer_class": "ChatGLM4Tokenizer"
|
134 |
}
|