devetle commited on
Commit
f6e14ad
1 Parent(s): 245156c

Upload first PPO LunarLander-v2 trained agent, reward = 260+/-19

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 248.23 +/- 24.73
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f932ab17950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f932ab179e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f932ab17a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f932ab17b00>", "_build": "<function ActorCriticPolicy._build at 0x7f932ab17b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f932ab17c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f932ab17cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f932ab17d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f932ab17dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f932ab17e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f932ab17ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f932aaec630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651998700.41488, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA5qVBPa38Bj/QWX083WbSvosTJD3iuK88AAAAAAAAAABm/iO7cS1Guaa6FrSM/Z2vwVTmO8uZqjMAAIA/AACAP7rERz7s1jE/rj5LPfu2176YSyY+xH6ovQAAAAAAAAAAmpkxN2GqjbyYHBC+7cHHOkQ/AD4qYZ+7AACAPwAAgD/znyw+i8vsPbb3Vb6z7mm+ATtiPe7Scj0AAAAAAAAAADOvsbzhVpG6LrIiu9mBmjmpIqK7AjCDOQAAgD8AAIA/ZuZGPNdfQ7sYITG8y7bhPLMfczz6W769AACAPwAAgD8zV70+Pn/6Ppq7xr0m6ai+/ANMPqdtxL0AAAAAAAAAAG5For5WlZI/HiTIvhsior4BSrW+ZmqSvQAAAAAAAAAAGvUFPXskiLo7quu9VwL3PD/jgbv+g9O9AACAPwAAgD8zHN+87CntuQNiVDwLXVA9SPrgO9drLz4AAIA/AACAP2ZOeTtfHa4/CgNbPfm7zb4KPp67E0H0uwAAAAAAAAAARgNYPkdTRT/WCr88UBS1vgSVnD0rW9S8AAAAAAAAAACabYk7dXLCP/+GpTxiMhq9zGibu7XYk7sAAAAAAAAAADMupD1ct3W64pvLPJGdCj1xE6m7hhrrPQAAgD8AAIA/ANp9PAqRT7tSM5W+AOsIvpQlCDwLDzc/AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwCZr1APuckCUhpRSlIwBbJRNCQGMAXSUR0Crb/8cMmWudX2UKGgGaAloD0MITpfFxGYDc0CUhpRSlGgVTR8BaBZHQKtwhJI1+Ap1fZQoaAZoCWgPQwhhqpm1VIxxQJSGlFKUaBVNAwFoFkdAq3F9UuL743V9lChoBmgJaA9DCLqfU5CfYnJAlIaUUpRoFUv8aBZHQKtyKn3L3bp1fZQoaAZoCWgPQwinlq31hT9zQJSGlFKUaBVL/WgWR0CrckYGUwBYdX2UKGgGaAloD0MINKFJYgmgcECUhpRSlGgVTRUBaBZHQKtyimhM8HR1fZQoaAZoCWgPQwjV7ewrD4ByQJSGlFKUaBVNMgFoFkdAq3KcEkjX4HV9lChoBmgJaA9DCHUGRl4WXXNAlIaUUpRoFU0+AWgWR0CrcubvgFX8dX2UKGgGaAloD0MILv8h/TbfcUCUhpRSlGgVTTgBaBZHQKty/gKnei11fZQoaAZoCWgPQwjd7Xppig5NQJSGlFKUaBVL7WgWR0Crcz9+XqqwdX2UKGgGaAloD0MIZED2evfRb0CUhpRSlGgVS+5oFkdAq3N7mjj7ynV9lChoBmgJaA9DCMB4Bg39UG5AlIaUUpRoFU1XAWgWR0Crc7f47A+IdX2UKGgGaAloD0MIIehoVcsmcECUhpRSlGgVTS8BaBZHQKtzyv8qFyt1fZQoaAZoCWgPQwjbwvNSMVluQJSGlFKUaBVNdAFoFkdAq3QufZmI03V9lChoBmgJaA9DCEYHJGFftHFAlIaUUpRoFU0NAWgWR0CrdHKtPpIMdX2UKGgGaAloD0MIwLFnz2WBckCUhpRSlGgVS/BoFkdAq3SdSEUTMHV9lChoBmgJaA9DCGXggJaujnBAlIaUUpRoFUv5aBZHQKt1OIhQm/p1fZQoaAZoCWgPQwg6HjNQmcJwQJSGlFKUaBVNVQFoFkdAq3YO+h4+r3V9lChoBmgJaA9DCDDa44W0WHBAlIaUUpRoFUvaaBZHQKt2b1cMVlB1fZQoaAZoCWgPQwhAwcWKGmZvQJSGlFKUaBVNHAFoFkdAq3bN0mtyP3V9lChoBmgJaA9DCBzSqMDJbXJAlIaUUpRoFU0EAWgWR0Crdu6nivPkdX2UKGgGaAloD0MIKbAApsy4cUCUhpRSlGgVTQIBaBZHQKt3SIuXeFd1fZQoaAZoCWgPQwjSqwFKQ+tyQJSGlFKUaBVNFQFoFkdAq3dZ5qubJHV9lChoBmgJaA9DCBMPKJsy5nJAlIaUUpRoFUv4aBZHQKt3e1F6Rhd1fZQoaAZoCWgPQwjgLZCgeJJwQJSGlFKUaBVNAgFoFkdAq3fuSntOVXV9lChoBmgJaA9DCHhF8L8VFXBAlIaUUpRoFUv9aBZHQKt4FNs3yZt1fZQoaAZoCWgPQwh8YTJVcNByQJSGlFKUaBVNKgFoFkdAq3hQtUXHinV9lChoBmgJaA9DCL/09ueinm9AlIaUUpRoFU0HAWgWR0CreH+pn6EbdX2UKGgGaAloD0MIZ5lFKPaGcUCUhpRSlGgVS/xoFkdAq3jMoF3Y+XV9lChoBmgJaA9DCOykviwtYXBAlIaUUpRoFU0gAWgWR0CreQekxh2GdX2UKGgGaAloD0MIyM7b2CxIcECUhpRSlGgVTSMBaBZHQKt5yO938oB1fZQoaAZoCWgPQwjqeTcWFGFwQJSGlFKUaBVNHgFoFkdAq3nePcSGrXV9lChoBmgJaA9DCAqgGFmypnBAlIaUUpRoFU0XAWgWR0Crel9eIEbHdX2UKGgGaAloD0MItoMR+wQ8c0CUhpRSlGgVS95oFkdAq3r6Z2IO6XV9lChoBmgJaA9DCLpnXaOlX3FAlIaUUpRoFUv0aBZHQKt7RaIN3GJ1fZQoaAZoCWgPQwihEtcxLtBxQJSGlFKUaBVNIQFoFkdAq3vNRgqmTHV9lChoBmgJaA9DCMzs8xjlFHJAlIaUUpRoFUv0aBZHQKt719kSVW11fZQoaAZoCWgPQwhLH7qgfnlyQJSGlFKUaBVNXAFoFkdAq3yhBqsU7HV9lChoBmgJaA9DCFosRfKVb3FAlIaUUpRoFU0iAWgWR0CrfP+jmCAddX2UKGgGaAloD0MI4Qm9/iTBbUCUhpRSlGgVTR0BaBZHQKt9awLVnVZ1fZQoaAZoCWgPQwguAmN9w0pxQJSGlFKUaBVNFgFoFkdAq31xGjKxLXV9lChoBmgJaA9DCKVKlL0l9nBAlIaUUpRoFU1KAWgWR0CrfaCD28IzdX2UKGgGaAloD0MI9Zz0vnFCbkCUhpRSlGgVS/1oFkdAq4rpYzSCv3V9lChoBmgJaA9DCA6jIHg8/HBAlIaUUpRoFUvyaBZHQKuK9Lzwtrd1fZQoaAZoCWgPQwi3YKkuoFtyQJSGlFKUaBVNMAFoFkdAq4uVgMMI/3V9lChoBmgJaA9DCKSNI9ai6XJAlIaUUpRoFU0FAWgWR0CrjB9ORDCxdX2UKGgGaAloD0MIWriswqYpcECUhpRSlGgVS/1oFkdAq4ykpXp4bHV9lChoBmgJaA9DCIxkj1DzKnFAlIaUUpRoFU10AWgWR0CrjLegL7XQdX2UKGgGaAloD0MIz2VqErwdcUCUhpRSlGgVS/loFkdAq406I55qunV9lChoBmgJaA9DCICAtWqXPnBAlIaUUpRoFU1LAWgWR0CrjaBW5paidX2UKGgGaAloD0MIO+C6YgaPcECUhpRSlGgVTRwBaBZHQKuOQW8h9st1fZQoaAZoCWgPQwi2TfG46GtwQJSGlFKUaBVNEQFoFkdAq46apcX3xnV9lChoBmgJaA9DCP2C3bCtnHBAlIaUUpRoFUvdaBZHQKuPG01IiC91fZQoaAZoCWgPQwgFTyFX6iVuQJSGlFKUaBVNMwFoFkdAq49jOzIFNnV9lChoBmgJaA9DCG/whckUQHFAlIaUUpRoFUv/aBZHQKuPaUB4lhR1fZQoaAZoCWgPQwgdAkcCzUdxQJSGlFKUaBVNEAFoFkdAq5Aho4+8oXV9lChoBmgJaA9DCD83NGWnnnFAlIaUUpRoFU03AWgWR0CrkDakRBeHdX2UKGgGaAloD0MISL99Hbj1cECUhpRSlGgVTQsBaBZHQKuQVIwudwx1fZQoaAZoCWgPQwgqcR3jymNxQJSGlFKUaBVNCwFoFkdAq5BgNb1RL3V9lChoBmgJaA9DCCf3OxTFOXFAlIaUUpRoFUv0aBZHQKuQi0gKWs11fZQoaAZoCWgPQwgIkQw5tlRRQJSGlFKUaBVL52gWR0CrkM4W+GoKdX2UKGgGaAloD0MIy03U0tzscUCUhpRSlGgVS/NoFkdAq5GZGFzuGHV9lChoBmgJaA9DCDepaKx9sW5AlIaUUpRoFU0JAWgWR0CrkflPSDywdX2UKGgGaAloD0MIjSrDuBv2cUCUhpRSlGgVS/NoFkdAq5KCjFhod3V9lChoBmgJaA9DCJkSSfQymHJAlIaUUpRoFUv1aBZHQKuTJqh11W91fZQoaAZoCWgPQwhUjPM3oaNtQJSGlFKUaBVNOgFoFkdAq5OSTjebeHV9lChoBmgJaA9DCMMrSZ5rnXJAlIaUUpRoFU0AAWgWR0CrlDsVLzwudX2UKGgGaAloD0MI16TbEnnOckCUhpRSlGgVTdYBaBZHQKuUSCGvfTF1fZQoaAZoCWgPQwhpq5LIfpVyQJSGlFKUaBVL/2gWR0CrlHuLBKtgdX2UKGgGaAloD0MIN1X3yGbRbECUhpRSlGgVTS0BaBZHQKuUrokiUxF1fZQoaAZoCWgPQwh6NxYURmpwQJSGlFKUaBVL7mgWR0CrlPGMGX5WdX2UKGgGaAloD0MIK/htiHGLcECUhpRSlGgVS+loFkdAq5UB26kIonV9lChoBmgJaA9DCEuuYvFb0HBAlIaUUpRoFUviaBZHQKuVDo8p1A91fZQoaAZoCWgPQwhfJR+7i7ZwQJSGlFKUaBVNJQFoFkdAq5U43Jgb63V9lChoBmgJaA9DCOZd9YA5TnJAlIaUUpRoFU0ZAWgWR0CrlZs41gpjdX2UKGgGaAloD0MIlWbzOEx3ckCUhpRSlGgVS/5oFkdAq5XHS4OMEXV9lChoBmgJaA9DCKnZA62ANnNAlIaUUpRoFUvjaBZHQKuWCKWszVN1fZQoaAZoCWgPQwi+Mm/VNbxwQJSGlFKUaBVNCwFoFkdAq5doYm9g4XV9lChoBmgJaA9DCCe9b3ztK29AlIaUUpRoFU0GAWgWR0Crl9Sv1UVBdX2UKGgGaAloD0MIyqfHtgyeb0CUhpRSlGgVTY0BaBZHQKuYOvQnhKl1fZQoaAZoCWgPQwi6Mqg2+OFxQJSGlFKUaBVL/2gWR0CrmFE1l5GCdX2UKGgGaAloD0MI8l8gCJA3cECUhpRSlGgVS/FoFkdAq5kO5J9RaXV9lChoBmgJaA9DCKKXUSy3CXJAlIaUUpRoFUv4aBZHQKuZJrtVrAR1fZQoaAZoCWgPQwhGX0GacXJwQJSGlFKUaBVNNwFoFkdAq5nRaJQ+EHV9lChoBmgJaA9DCDlFR3J5onBAlIaUUpRoFU0mAWgWR0CrmprwvxpddX2UKGgGaAloD0MIFk1nJ8M/cUCUhpRSlGgVTQ4BaBZHQKuat1Tzd1x1fZQoaAZoCWgPQwhYU1kU9olyQJSGlFKUaBVNKQFoFkdAq5r3oPkJbHV9lChoBmgJaA9DCGeZRSg2nW5AlIaUUpRoFU0mAWgWR0Crmwf7zkIYdX2UKGgGaAloD0MIL90kBgHAcECUhpRSlGgVTQsBaBZHQKubJVinYQJ1fZQoaAZoCWgPQwgiNIKNa19wQJSGlFKUaBVNMAFoFkdAq5ssNUfgaXV9lChoBmgJaA9DCAjlfRyNpHFAlIaUUpRoFUv1aBZHQKubMrtmcvx1fZQoaAZoCWgPQwjVB5J3zjVxQJSGlFKUaBVNVAFoFkdAq5tRzRx95XV9lChoBmgJaA9DCCyazk4GvG9AlIaUUpRoFU03AWgWR0CrnA/pljEvdX2UKGgGaAloD0MIscBXdOvFcUCUhpRSlGgVTRYBaBZHQKucxPHktEp1fZQoaAZoCWgPQwjyeFp+YFxvQJSGlFKUaBVNHgFoFkdAq51P2IwdsHV9lChoBmgJaA9DCJGYoIZv3W5AlIaUUpRoFU0MAWgWR0CrnWF6Rhc8dX2UKGgGaAloD0MI+64I/rdncUCUhpRSlGgVTR0BaBZHQKudyer+5vt1fZQoaAZoCWgPQwhKsg5HV5pxQJSGlFKUaBVNAQFoFkdAq54OsNlRQHV9lChoBmgJaA9DCKmkTkCTE3JAlIaUUpRoFU0AAWgWR0CrnqFdszl+dX2UKGgGaAloD0MIvjPaquSgcUCUhpRSlGgVS+poFkdAq57mhkAggXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d4c98d2ee83da88e3a1d94f4103bac11efc31f359643fc1bedb7a0b023b144e
3
+ size 143856
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f932ab17950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f932ab179e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f932ab17a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f932ab17b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f932ab17b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f932ab17c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f932ab17cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f932ab17d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f932ab17dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f932ab17e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f932ab17ef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f932aaec630>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651998700.41488,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA5qVBPa38Bj/QWX083WbSvosTJD3iuK88AAAAAAAAAABm/iO7cS1Guaa6FrSM/Z2vwVTmO8uZqjMAAIA/AACAP7rERz7s1jE/rj5LPfu2176YSyY+xH6ovQAAAAAAAAAAmpkxN2GqjbyYHBC+7cHHOkQ/AD4qYZ+7AACAPwAAgD/znyw+i8vsPbb3Vb6z7mm+ATtiPe7Scj0AAAAAAAAAADOvsbzhVpG6LrIiu9mBmjmpIqK7AjCDOQAAgD8AAIA/ZuZGPNdfQ7sYITG8y7bhPLMfczz6W769AACAPwAAgD8zV70+Pn/6Ppq7xr0m6ai+/ANMPqdtxL0AAAAAAAAAAG5For5WlZI/HiTIvhsior4BSrW+ZmqSvQAAAAAAAAAAGvUFPXskiLo7quu9VwL3PD/jgbv+g9O9AACAPwAAgD8zHN+87CntuQNiVDwLXVA9SPrgO9drLz4AAIA/AACAP2ZOeTtfHa4/CgNbPfm7zb4KPp67E0H0uwAAAAAAAAAARgNYPkdTRT/WCr88UBS1vgSVnD0rW9S8AAAAAAAAAACabYk7dXLCP/+GpTxiMhq9zGibu7XYk7sAAAAAAAAAADMupD1ct3W64pvLPJGdCj1xE6m7hhrrPQAAgD8AAIA/ANp9PAqRT7tSM5W+AOsIvpQlCDwLDzc/AACAPwAAgD+UdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwCZr1APuckCUhpRSlIwBbJRNCQGMAXSUR0Crb/8cMmWudX2UKGgGaAloD0MITpfFxGYDc0CUhpRSlGgVTR8BaBZHQKtwhJI1+Ap1fZQoaAZoCWgPQwhhqpm1VIxxQJSGlFKUaBVNAwFoFkdAq3F9UuL743V9lChoBmgJaA9DCLqfU5CfYnJAlIaUUpRoFUv8aBZHQKtyKn3L3bp1fZQoaAZoCWgPQwinlq31hT9zQJSGlFKUaBVL/WgWR0CrckYGUwBYdX2UKGgGaAloD0MINKFJYgmgcECUhpRSlGgVTRUBaBZHQKtyimhM8HR1fZQoaAZoCWgPQwjV7ewrD4ByQJSGlFKUaBVNMgFoFkdAq3KcEkjX4HV9lChoBmgJaA9DCHUGRl4WXXNAlIaUUpRoFU0+AWgWR0CrcubvgFX8dX2UKGgGaAloD0MILv8h/TbfcUCUhpRSlGgVTTgBaBZHQKty/gKnei11fZQoaAZoCWgPQwjd7Xppig5NQJSGlFKUaBVL7WgWR0Crcz9+XqqwdX2UKGgGaAloD0MIZED2evfRb0CUhpRSlGgVS+5oFkdAq3N7mjj7ynV9lChoBmgJaA9DCMB4Bg39UG5AlIaUUpRoFU1XAWgWR0Crc7f47A+IdX2UKGgGaAloD0MIIehoVcsmcECUhpRSlGgVTS8BaBZHQKtzyv8qFyt1fZQoaAZoCWgPQwjbwvNSMVluQJSGlFKUaBVNdAFoFkdAq3QufZmI03V9lChoBmgJaA9DCEYHJGFftHFAlIaUUpRoFU0NAWgWR0CrdHKtPpIMdX2UKGgGaAloD0MIwLFnz2WBckCUhpRSlGgVS/BoFkdAq3SdSEUTMHV9lChoBmgJaA9DCGXggJaujnBAlIaUUpRoFUv5aBZHQKt1OIhQm/p1fZQoaAZoCWgPQwg6HjNQmcJwQJSGlFKUaBVNVQFoFkdAq3YO+h4+r3V9lChoBmgJaA9DCDDa44W0WHBAlIaUUpRoFUvaaBZHQKt2b1cMVlB1fZQoaAZoCWgPQwhAwcWKGmZvQJSGlFKUaBVNHAFoFkdAq3bN0mtyP3V9lChoBmgJaA9DCBzSqMDJbXJAlIaUUpRoFU0EAWgWR0Crdu6nivPkdX2UKGgGaAloD0MIKbAApsy4cUCUhpRSlGgVTQIBaBZHQKt3SIuXeFd1fZQoaAZoCWgPQwjSqwFKQ+tyQJSGlFKUaBVNFQFoFkdAq3dZ5qubJHV9lChoBmgJaA9DCBMPKJsy5nJAlIaUUpRoFUv4aBZHQKt3e1F6Rhd1fZQoaAZoCWgPQwjgLZCgeJJwQJSGlFKUaBVNAgFoFkdAq3fuSntOVXV9lChoBmgJaA9DCHhF8L8VFXBAlIaUUpRoFUv9aBZHQKt4FNs3yZt1fZQoaAZoCWgPQwh8YTJVcNByQJSGlFKUaBVNKgFoFkdAq3hQtUXHinV9lChoBmgJaA9DCL/09ueinm9AlIaUUpRoFU0HAWgWR0CreH+pn6EbdX2UKGgGaAloD0MIZ5lFKPaGcUCUhpRSlGgVS/xoFkdAq3jMoF3Y+XV9lChoBmgJaA9DCOykviwtYXBAlIaUUpRoFU0gAWgWR0CreQekxh2GdX2UKGgGaAloD0MIyM7b2CxIcECUhpRSlGgVTSMBaBZHQKt5yO938oB1fZQoaAZoCWgPQwjqeTcWFGFwQJSGlFKUaBVNHgFoFkdAq3nePcSGrXV9lChoBmgJaA9DCAqgGFmypnBAlIaUUpRoFU0XAWgWR0Crel9eIEbHdX2UKGgGaAloD0MItoMR+wQ8c0CUhpRSlGgVS95oFkdAq3r6Z2IO6XV9lChoBmgJaA9DCLpnXaOlX3FAlIaUUpRoFUv0aBZHQKt7RaIN3GJ1fZQoaAZoCWgPQwihEtcxLtBxQJSGlFKUaBVNIQFoFkdAq3vNRgqmTHV9lChoBmgJaA9DCMzs8xjlFHJAlIaUUpRoFUv0aBZHQKt719kSVW11fZQoaAZoCWgPQwhLH7qgfnlyQJSGlFKUaBVNXAFoFkdAq3yhBqsU7HV9lChoBmgJaA9DCFosRfKVb3FAlIaUUpRoFU0iAWgWR0CrfP+jmCAddX2UKGgGaAloD0MI4Qm9/iTBbUCUhpRSlGgVTR0BaBZHQKt9awLVnVZ1fZQoaAZoCWgPQwguAmN9w0pxQJSGlFKUaBVNFgFoFkdAq31xGjKxLXV9lChoBmgJaA9DCKVKlL0l9nBAlIaUUpRoFU1KAWgWR0CrfaCD28IzdX2UKGgGaAloD0MI9Zz0vnFCbkCUhpRSlGgVS/1oFkdAq4rpYzSCv3V9lChoBmgJaA9DCA6jIHg8/HBAlIaUUpRoFUvyaBZHQKuK9Lzwtrd1fZQoaAZoCWgPQwi3YKkuoFtyQJSGlFKUaBVNMAFoFkdAq4uVgMMI/3V9lChoBmgJaA9DCKSNI9ai6XJAlIaUUpRoFU0FAWgWR0CrjB9ORDCxdX2UKGgGaAloD0MIWriswqYpcECUhpRSlGgVS/1oFkdAq4ykpXp4bHV9lChoBmgJaA9DCIxkj1DzKnFAlIaUUpRoFU10AWgWR0CrjLegL7XQdX2UKGgGaAloD0MIz2VqErwdcUCUhpRSlGgVS/loFkdAq406I55qunV9lChoBmgJaA9DCICAtWqXPnBAlIaUUpRoFU1LAWgWR0CrjaBW5paidX2UKGgGaAloD0MIO+C6YgaPcECUhpRSlGgVTRwBaBZHQKuOQW8h9st1fZQoaAZoCWgPQwi2TfG46GtwQJSGlFKUaBVNEQFoFkdAq46apcX3xnV9lChoBmgJaA9DCP2C3bCtnHBAlIaUUpRoFUvdaBZHQKuPG01IiC91fZQoaAZoCWgPQwgFTyFX6iVuQJSGlFKUaBVNMwFoFkdAq49jOzIFNnV9lChoBmgJaA9DCG/whckUQHFAlIaUUpRoFUv/aBZHQKuPaUB4lhR1fZQoaAZoCWgPQwgdAkcCzUdxQJSGlFKUaBVNEAFoFkdAq5Aho4+8oXV9lChoBmgJaA9DCD83NGWnnnFAlIaUUpRoFU03AWgWR0CrkDakRBeHdX2UKGgGaAloD0MISL99Hbj1cECUhpRSlGgVTQsBaBZHQKuQVIwudwx1fZQoaAZoCWgPQwgqcR3jymNxQJSGlFKUaBVNCwFoFkdAq5BgNb1RL3V9lChoBmgJaA9DCCf3OxTFOXFAlIaUUpRoFUv0aBZHQKuQi0gKWs11fZQoaAZoCWgPQwgIkQw5tlRRQJSGlFKUaBVL52gWR0CrkM4W+GoKdX2UKGgGaAloD0MIy03U0tzscUCUhpRSlGgVS/NoFkdAq5GZGFzuGHV9lChoBmgJaA9DCDepaKx9sW5AlIaUUpRoFU0JAWgWR0CrkflPSDywdX2UKGgGaAloD0MIjSrDuBv2cUCUhpRSlGgVS/NoFkdAq5KCjFhod3V9lChoBmgJaA9DCJkSSfQymHJAlIaUUpRoFUv1aBZHQKuTJqh11W91fZQoaAZoCWgPQwhUjPM3oaNtQJSGlFKUaBVNOgFoFkdAq5OSTjebeHV9lChoBmgJaA9DCMMrSZ5rnXJAlIaUUpRoFU0AAWgWR0CrlDsVLzwudX2UKGgGaAloD0MI16TbEnnOckCUhpRSlGgVTdYBaBZHQKuUSCGvfTF1fZQoaAZoCWgPQwhpq5LIfpVyQJSGlFKUaBVL/2gWR0CrlHuLBKtgdX2UKGgGaAloD0MIN1X3yGbRbECUhpRSlGgVTS0BaBZHQKuUrokiUxF1fZQoaAZoCWgPQwh6NxYURmpwQJSGlFKUaBVL7mgWR0CrlPGMGX5WdX2UKGgGaAloD0MIK/htiHGLcECUhpRSlGgVS+loFkdAq5UB26kIonV9lChoBmgJaA9DCEuuYvFb0HBAlIaUUpRoFUviaBZHQKuVDo8p1A91fZQoaAZoCWgPQwhfJR+7i7ZwQJSGlFKUaBVNJQFoFkdAq5U43Jgb63V9lChoBmgJaA9DCOZd9YA5TnJAlIaUUpRoFU0ZAWgWR0CrlZs41gpjdX2UKGgGaAloD0MIlWbzOEx3ckCUhpRSlGgVS/5oFkdAq5XHS4OMEXV9lChoBmgJaA9DCKnZA62ANnNAlIaUUpRoFUvjaBZHQKuWCKWszVN1fZQoaAZoCWgPQwi+Mm/VNbxwQJSGlFKUaBVNCwFoFkdAq5doYm9g4XV9lChoBmgJaA9DCCe9b3ztK29AlIaUUpRoFU0GAWgWR0Crl9Sv1UVBdX2UKGgGaAloD0MIyqfHtgyeb0CUhpRSlGgVTY0BaBZHQKuYOvQnhKl1fZQoaAZoCWgPQwi6Mqg2+OFxQJSGlFKUaBVL/2gWR0CrmFE1l5GCdX2UKGgGaAloD0MI8l8gCJA3cECUhpRSlGgVS/FoFkdAq5kO5J9RaXV9lChoBmgJaA9DCKKXUSy3CXJAlIaUUpRoFUv4aBZHQKuZJrtVrAR1fZQoaAZoCWgPQwhGX0GacXJwQJSGlFKUaBVNNwFoFkdAq5nRaJQ+EHV9lChoBmgJaA9DCDlFR3J5onBAlIaUUpRoFU0mAWgWR0CrmprwvxpddX2UKGgGaAloD0MIFk1nJ8M/cUCUhpRSlGgVTQ4BaBZHQKuat1Tzd1x1fZQoaAZoCWgPQwhYU1kU9olyQJSGlFKUaBVNKQFoFkdAq5r3oPkJbHV9lChoBmgJaA9DCGeZRSg2nW5AlIaUUpRoFU0mAWgWR0Crmwf7zkIYdX2UKGgGaAloD0MIL90kBgHAcECUhpRSlGgVTQsBaBZHQKubJVinYQJ1fZQoaAZoCWgPQwgiNIKNa19wQJSGlFKUaBVNMAFoFkdAq5ssNUfgaXV9lChoBmgJaA9DCAjlfRyNpHFAlIaUUpRoFUv1aBZHQKubMrtmcvx1fZQoaAZoCWgPQwjVB5J3zjVxQJSGlFKUaBVNVAFoFkdAq5tRzRx95XV9lChoBmgJaA9DCCyazk4GvG9AlIaUUpRoFU03AWgWR0CrnA/pljEvdX2UKGgGaAloD0MIscBXdOvFcUCUhpRSlGgVTRYBaBZHQKucxPHktEp1fZQoaAZoCWgPQwjyeFp+YFxvQJSGlFKUaBVNHgFoFkdAq51P2IwdsHV9lChoBmgJaA9DCJGYoIZv3W5AlIaUUpRoFU0MAWgWR0CrnWF6Rhc8dX2UKGgGaAloD0MI+64I/rdncUCUhpRSlGgVTR0BaBZHQKudyer+5vt1fZQoaAZoCWgPQwhKsg5HV5pxQJSGlFKUaBVNAQFoFkdAq54OsNlRQHV9lChoBmgJaA9DCKmkTkCTE3JAlIaUUpRoFU0AAWgWR0CrnqFdszl+dX2UKGgGaAloD0MIvjPaquSgcUCUhpRSlGgVS+poFkdAq57mhkAggXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e956560bf989c72940cdfc4196f97407a0760ba9c315afb9b64bb806a80bb47c
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea35d40c0e40b9392bd3a4b01b85ee5845f3a833210429980d339564004fd20e
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5947c1379a4ffc73714878b34ede480963723060b457b14a8a2632a70bd813f9
3
+ size 253318
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.22957189639834, "std_reward": 24.727764110838866, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T08:58:49.357339"}