File size: 8,495 Bytes
db3bf65 82a1688 77624a7 82a1688 77624a7 82a1688 77624a7 82a1688 8982cd9 7a85ca8 82a1688 e660611 82a1688 b80a593 fdac9cc b80a593 fdac9cc ac2cfe3 8982cd9 ac2cfe3 b80a593 ac2cfe3 8982cd9 ac2cfe3 8982cd9 ac2cfe3 8982cd9 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 8982cd9 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 b80a593 ac2cfe3 8982cd9 ac2cfe3 cea9fc6 b80a593 cea9fc6 ac2cfe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
license: llama2
library_name: peft
tags:
- llama-2
datasets:
- ehartford/dolphin
inference: false
pipeline_tag: text-generation
base_model: meta-llama/Llama-2-13b-hf
---
<div align="center">
<img src="./assets/llama.png" width="150px">
</div>
# Llama-2-13B-Instruct-v0.1
This instruction model was built via parameter-efficient QLoRA finetuning of [llama-2-13b](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the first 100k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) (an open-source implementation of [Microsoft's Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/)). Finetuning was executed on a single A6000 (48 GB) for roughly 18 hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
## Benchmark metrics
| Metric | Value |
|-----------------------|-------|
| MMLU (5-shot) | 55.76 |
| ARC (25-shot) | 59.98 |
| HellaSwag (10-shot) | 82.43 |
| TruthfulQA (0-shot) | 42.59 |
| Avg. | 60.19 |
We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
## Helpful Links
* Model license: Llama 2 Community License Agreement
* Basic usage: [notebook](assets/basic_inference_llama_2_13b_dolphin.ipynb)
* Finetuning script: [script](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/llama-2/dolphin/sft-Llama-2-13B-Instruct-v0.1-peft.py)
* Loss curves: [plot](https://huggingface.co/dfurman/Llama-2-13B-Instruct-v0.1-peft#finetuning-description)
* Runtime stats: [table](https://huggingface.co/dfurman/Llama-2-13B-Instruct-v0.1-peft#runtime-tests)
## Example prompts and responses
Example 1:
**User**:
>You are a helpful assistant. Write me a numbered list of things to do in New York City.\n
**Llama-2-13B-Instruct-v0.1-peft**:
> 1. Visit the iconic Statue of Liberty and Ellis Island.
> 2. Take a stroll through Central Park and enjoy its many attractions.
> 3. Explore the world-renowned museums, such as the Metropolitan Museum of Art and the Museum of Modern Art.
> 4. Experience the vibrant energy of Times Square and take in the bright lights and billboards.
> 5. Visit the 9/11 Memorial and Museum to pay tribute to those who lost their lives in the attacks.
> 6. Enjoy a Broadway show or a concert at one of the many theaters and venues in the city.
> 7. Take a ride on the Staten Island Ferry for a free view of the Statue of Liberty and the New York City skyline.
> 8. Shop at the famous Fifth Avenue stores and explore the high-end boutiques.
> 9. Indulge in a variety of cuisines at one of the many restaurants in the city.
> 10. Visit the Empire State Building and enjoy the panoramic views of the city from the observation deck.
<br>
Example 2:
**User**:
>You are a helpful assistant. Write a short email inviting my friends to a dinner party on Friday. Respond succinctly.\n"
**Llama-2-13B-Instruct-v0.1-peft**:
> Subject: Friday Dinner Party Invitation
>
> Dear Friends,
>
> I hope this email finds you well. I'm excited to invite you all to a dinner party on Friday, March 10th, at 7:00 PM. The address is 123 Main Street, Anytown, USA.
>
> Please RSVP by Wednesday, March 8th, so I can plan accordingly. I look forward to seeing you all and sharing a delicious meal together!
>
> Best,
> Your Friendly Assistant
>
> P.S. If you have any dietary restrictions or allergies, please let me know in your RSVP. Thank you!
<br>
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The llama-2-13b models have been modified from a standard transformer in the following ways:
* It uses the [SwiGLU activation function](https://arxiv.org/abs/2002.05202)
* It uses [rotary positional embeddings](https://arxiv.org/abs/2104.09864) (RoPE)
| Hyperparameter | Value |
|----------------|-------|
| n_parameters | 13B |
| tokens | 2.0T |
| vocab size | 32000 |
| sequence length | 4096 |
## Finetuning Description
This model was trained on a single A6000 (48 GB) for about 18 hours using the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
![loss curves](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/jul_24_23_1_13_00_log_loss_curves_Llama-2-13B-Instruct-v0.1.png)
The above loss curve was generated from the run's private wandb.ai log.
## PreTraining Data
For more details on the pretraining process, see [Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf).
The data was tokenized using the [Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) tokenizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
This model can produce factually incorrect output, and should not be relied on to produce factually accurate information.
This model was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## How to Use
* [notebook](assets/basic_inference_llama_2_dolphin.ipynb)
```python
!pip install -q -U huggingface_hub peft transformers torch accelerate
```
```python
from huggingface_hub import notebook_login
import torch
from peft import PeftModel, PeftConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
notebook_login()
```
```python
peft_model_id = "dfurman/Llama-2-13B-Instruct-v0.1-peft"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
quantization_config=bnb_config,
use_auth_token=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, peft_model_id)
format_template = "You are a helpful assistant. {query}\n"
```
```python
# First, format the prompt
query = "Tell me a recipe for vegan banana bread."
prompt = format_template.format(query=query)
# Inference can be done using model.generate
print("\n\n*** Generate:")
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
with torch.autocast("cuda", dtype=torch.bfloat16):
output = model.generate(
input_ids=input_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
return_dict_in_generate=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
repetition_penalty=1.2,
)
print(tokenizer.decode(output["sequences"][0], skip_special_tokens=True))
```
## Runtime tests
| runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
| 2.93 | 1x A100 (40 GB SXM) | torch | bfloat16 | 25 |
| 3.24 | 1x A6000 (48 GB) | torch | bfloat16 | 25 |
The above runtime stats were generated from this [notebook](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/llama-2/dolphin/postprocessing-Llama-2-13B-Instruct-v0.1-peft.ipynb).
## Acknowledgements
This model was finetuned by Daniel Furman on July 22, 2023 and is intended primarily for research purposes.
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Meta citation for llama-2 blog
```
@online{Meta2023Introducing,
author = {Meta AI},
title = {Meta and Microsoft Introduce the Next Generation of Llama},
year = {2023},
url = {https://about.fb.com/news/2023/07/llama-2/},
note = {Accessed: 2023-07-24},
urldate = {2023-07-24}
}
```
---
## Framework versions
- PEFT 0.5.0.dev0
|