File size: 12,564 Bytes
db3bf65 1d9cddb 77624a7 d0deb44 77624a7 b2dc847 82a1688 d0deb44 8982cd9 a81db74 8982cd9 d0deb44 8982cd9 a3a1367 ac2cfe3 9444756 ac2cfe3 d0deb44 7e4f067 a3a1367 d0deb44 ac4b096 d0deb44 a3a1367 d0deb44 9109d1a d0deb44 9109d1a d0deb44 9109d1a a1a5041 9109d1a d0deb44 7e4f067 d0deb44 a3a1367 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 169626f d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 5444cca d0deb44 5444cca d0deb44 5444cca d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 61c5051 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 7a938fa 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 d0deb44 7e4f067 af1877b ac2cfe3 d0deb44 6371280 d0deb44 6371280 d0deb44 cea9fc6 d0deb44 cea9fc6 4fbdb08 b2dc847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
---
license: llama2
library_name: peft
tags:
- mistral
datasets:
- jondurbin/airoboros-2.2.1
- Open-Orca/SlimOrca
- garage-bAInd/Open-Platypus
inference: false
pipeline_tag: text-generation
base_model: meta-llama/Llama-2-13b-hf
model-index:
- name: llama-2-13b-dolphin-peft
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 22.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-13b-dolphin-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 25.04
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-13b-dolphin-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-13b-dolphin-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 0.0
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-13b-dolphin-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-13b-dolphin-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-13b-dolphin-peft
name: Open LLM Leaderboard
---
<div align="center">
<img src="./assets/llama.png" width="150px">
</div>
# Llama-2-13B-Instruct-v0.2
A pretrained generative language model with 13 billion parameters geared towards instruction-following capabilities.
## Model Details
This model was built via parameter-efficient finetuning of the [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) base model on the first 20k rows in each of the [jondurbin/airoboros-2.2.1](https://huggingface.co/datasets/jondurbin/airoboros-2.2.1), [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca), and [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) datasets.
- **Developed by:** Daniel Furman
- **Model type:** Causal language model (clm)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
## Open LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
*Note*: The below values do not apply the [prompt formatting](https://huggingface.co/dfurman/Llama-2-13B-Instruct-v0.2#prompt-format) used to finetune the model. An action item for future development is to run these evaluation benchmarks with the formatting applied, which should increase the scores.
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 55.14 |
| ARC (25-shot) | 60.58 |
| HellaSwag (10-shot) | 81.96 |
| MMLU (5-shot) | 55.46 |
| TruthfulQA (0-shot) | 45.71 |
| Winogrande (5-shot) | 77.82 |
| GSM8K (5-shot) | 9.33 |
## Basic Usage
<details>
<summary>Setup</summary>
```python
!pip install -q -U transformers peft torch accelerate einops sentencepiece
```
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
```
```python
peft_model_id = "dfurman/Llama-2-13B-Instruct-v0.2"
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(
peft_model_id,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
model = PeftModel.from_pretrained(
model,
peft_model_id
)
```
</details>
```python
messages = [
{"role": "user", "content": "Tell me a recipe for a mai tai."},
]
print("\n\n*** Prompt:")
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
return_tensors="pt",
)
print(tokenizer.decode(input_ids[0]))
print("\n\n*** Generate:")
with torch.autocast("cuda", dtype=torch.bfloat16):
output = model.generate(
input_ids=input_ids.cuda(),
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
return_dict_in_generate=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
repetition_penalty=1.2,
no_repeat_ngram_size=5,
)
response = tokenizer.decode(
output["sequences"][0][len(input_ids[0]):],
skip_special_tokens=True
)
print(response)
```
<details>
<summary>Outputs</summary>
**Prompt**:
```python
"<s> [INST] Tell me a recipe for a mai tai. [/INST]"
```
**Generation**:
```python
"""1 ounce orange curaçao
4 ounces dark rum (I recommend using Myers's)
2 ounces light rum (Myers's is also good here)
3 ounces freshly squeezed lime juice
6 to 8 ice cubes
Shake all ingredients except the ice in a cocktail shaker until chilled, about 5 seconds. Add the ice and shake again until frosty, about another 5 seconds. Strain into an old-fashioned or double rocks glass filled with crushed ice. Garnish with an orange slice and a cherry speared on a skewer."""
```
</details>
## Speeds, Sizes, Times
| runtime / 50 tokens (sec) | GPU | dtype | VRAM (GB) |
|:-----------------------------:|:---------------------:|:-------------:|:-----------------------:|
| 3.99 | 1x A100 (40 GB SXM) | torch.bfloat16 | 30 |
## Training
It took ~8 hours to train 3 epochs on 1x A100 (40 GB SXM).
### Prompt Format
This model was finetuned with the following format:
```python
tokenizer.chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST] ' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
```
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method. Here's an illustrative example:
```python
messages = [
{"role": "user", "content": "Tell me a recipe for a mai tai."},
{"role": "assistant", "content": "1 oz light rum\n½ oz dark rum\n¼ oz orange curaçao\n2 oz pineapple juice\n¾ oz lime juice\nDash of orgeat syrup (optional)\nSplash of grenadine (for garnish, optional)\nLime wheel and cherry garnishes (optional)\n\nShake all ingredients except the splash of grenadine in a cocktail shaker over ice. Strain into an old-fashioned glass filled with fresh ice cubes. Gently pour the splash of grenadine down the side of the glass so that it sinks to the bottom. Add garnishes as desired."},
{"role": "user", "content": "How can I make it more upscale and luxurious?"},
]
print("\n\n*** Prompt:")
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
return_tensors="pt",
)
print(tokenizer.decode(input_ids[0]))
```
<details>
<summary>Output</summary>
```python
"<s> [INST] Tell me a recipe for a mai tai. [/INST] 1 ounce orange curaçao\n4 ounces dark rum (...) orange slice and a cherry speared on a skewer.</s> [INST] How can I make the mai tai more upscale and luxurious? [/INST] "
```
</details>
### Training Hyperparameters
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/llama-2/sft_Llama_2_13B_Instruct_v0_2_peft.ipynb) for the finetuning code, which contains an exhaustive view of the hyperparameters employed.
The following `TrainingArguments` config was used:
- output_dir = "./results"
- num_train_epochs = 2
- auto_find_batch_size = True
- gradient_accumulation_steps = 2
- optim = "paged_adamw_32bit"
- save_strategy = "epoch"
- learning_rate = 3e-4
- lr_scheduler_type = "cosine"
- warmup_ratio = 0.03
- logging_strategy = "steps"
- logging_steps = 25
- evaluation_strategy = "no"
- bf16 = True
The following `bitsandbytes` quantization config was used:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
## Model Card Contact
dryanfurman at gmail
## Llama-2 Research Citation
```
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Framework versions
- PEFT 0.6.3.dev0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__llama-2-13b-dolphin-peft)
| Metric |Value|
|---------------------------------|----:|
|Avg. |20.07|
|AI2 Reasoning Challenge (25-Shot)|22.70|
|HellaSwag (10-Shot) |25.04|
|MMLU (5-Shot) |23.12|
|TruthfulQA (0-shot) | 0.00|
|Winogrande (5-shot) |49.57|
|GSM8k (5-shot) | 0.00|
|