File size: 4,571 Bytes
d493482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from torch.autograd import Variable
from PIL import Image


def build_model(hypar, device):
    net = hypar["model"]  # GOSNETINC(3,1)

    # convert to half precision
    if hypar["model_digit"] == "half":
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if hypar["restore_model"] != "":
        net.load_state_dict(
            torch.load(
                hypar["model_path"] + "/" + hypar["restore_model"],
                map_location=device,
            )
        )
        net.to(device)
    net.eval()
    return net


if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.mkdir("git")
    os.system("git clone https://github.com/xuebinqin/DIS git/xuebinqin/DIS")
    hf_hub_download(
        repo_id="NimaBoscarino/IS-Net_DIS-general-use",
        filename="isnet-general-use.pth",
        local_dir="saved_models",
    )
    os.system("rm -r git/xuebinqin/DIS/IS-Net/__pycache__")
    os.system("mv git/xuebinqin/DIS/IS-Net/* .")

import data_loader_cache
import models

device = "cpu"
ISNetDIS = models.ISNetDIS
normalize = data_loader_cache.normalize
im_preprocess = data_loader_cache.im_preprocess

# Set Parameters
hypar = {}  # paramters for inferencing

# load trained weights from this path
hypar["model_path"] = "./saved_models"
# name of the to-be-loaded weights
hypar["restore_model"] = "isnet-general-use.pth"
# indicate if activate intermediate feature supervision
hypar["interm_sup"] = False

# choose floating point accuracy --
# indicates "half" or "full" accuracy of float number
hypar["model_digit"] = "full"
hypar["seed"] = 0

# cached input spatial resolution, can be configured into different size
hypar["cache_size"] = [1024, 1024]

# data augmentation parameters ---
# mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["input_size"] = [1024, 1024]
# random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
hypar["crop_size"] = [1024, 1024]

hypar["model"] = ISNetDIS()

# Build Model
net = build_model(hypar, device)


def predict(net, inputs_val, shapes_val, hypar, device):
    """
    Given an Image, predict the mask
    """
    net.eval()

    if hypar["model_digit"] == "full":
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(
        device
    )  # wrap inputs in Variable

    ds_val = net(inputs_val_v)[0]  # list of 6 results

    # B x 1 x H x W    # we want the first one which is the most accurate prediction
    pred_val = ds_val[0][0, :, :, :]

    # recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(
        F.upsample(
            torch.unsqueeze(pred_val, 0),
            (shapes_val[0][0], shapes_val[0][1]),
            mode="bilinear",
        )
    )

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val - mi) / (ma - mi)  # max = 1

    if device == "cpu":
        torch.cpu.empty_cache()
    # it is the mask we need
    return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)


def load_image(im_pil, hypar):
    im = np.array(im_pil)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    # make a batch of image, shape
    aa = normalize(im, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
    return aa.unsqueeze(0), shape.unsqueeze(0)


def remove_background(image):
    image_tensor, orig_size = load_image(image, hypar)
    mask = predict(net, image_tensor, orig_size, hypar, "cpu")

    mask = Image.fromarray(mask).convert("L")
    im_rgb = image.convert("RGB")

    cropped = im_rgb.copy()
    cropped.putalpha(mask)
    return cropped


inputs = gr.inputs.Image()
outputs = gr.outputs.Image(type="pil")
interface = gr.Interface(
    fn=remove_background,
    inputs=inputs,
    outputs=outputs,
    title="Remove Background",
    description="This App removes the background from an image",
    examples=[
        "examples/input/1.jpeg",
        "examples/input/2.jpeg",
        "examples/input/3.jpeg",
    ],
    cache_examples=True,
)
interface.launch(enable_queue=True)