diagonalge commited on
Commit
afddb11
1 Parent(s): ba92771

End of training

Browse files
Files changed (2) hide show
  1. README.md +148 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: unsloth/Meta-Llama-3.1-8B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: aec496bb-64b4-44c8-b67a-502d6d9f8401
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: unsloth/Meta-Llama-3.1-8B-Instruct
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - ChatDoctor-HealthCareMagic-100k_train_data.json
29
+ ds_type: json
30
+ path: /workspace/input_data/ChatDoctor-HealthCareMagic-100k_train_data.json
31
+ type:
32
+ field_input: input
33
+ field_instruction: instruction
34
+ field_output: output
35
+ system_format: '{system}'
36
+ system_prompt: ''
37
+ debug: null
38
+ deepspeed: null
39
+ early_stopping_patience: null
40
+ eval_max_new_tokens: 128
41
+ eval_table_size: null
42
+ evals_per_epoch: 4
43
+ flash_attention: false
44
+ fp16: null
45
+ fsdp: null
46
+ fsdp_config: null
47
+ gradient_accumulation_steps: 4
48
+ gradient_checkpointing: true
49
+ group_by_length: false
50
+ hub_model_id: diagonalge/aec496bb-64b4-44c8-b67a-502d6d9f8401
51
+ hub_repo: diagonalge
52
+ hub_strategy: checkpoint
53
+ hub_token: null
54
+ learning_rate: 0.0002
55
+ load_in_4bit: false
56
+ load_in_8bit: true
57
+ local_rank: null
58
+ logging_steps: 1
59
+ lora_alpha: 32
60
+ lora_dropout: 0.05
61
+ lora_fan_in_fan_out: null
62
+ lora_model_dir: null
63
+ lora_r: 16
64
+ lora_target_linear: true
65
+ lr_scheduler: cosine
66
+ max_steps: 10
67
+ micro_batch_size: 2
68
+ mlflow_experiment_name: /tmp/ChatDoctor-HealthCareMagic-100k_train_data.json
69
+ model_type: AutoModelForCausalLM
70
+ num_epochs: 1
71
+ optimizer: adamw_bnb_8bit
72
+ output_dir: miner_id_24
73
+ pad_to_sequence_len: true
74
+ resume_from_checkpoint: null
75
+ s2_attention: null
76
+ sample_packing: false
77
+ save_steps: 5
78
+ save_strategy: steps
79
+ sequence_len: 4096
80
+ strict: false
81
+ tf32: false
82
+ tokenizer_type: AutoTokenizer
83
+ train_on_inputs: false
84
+ val_set_size: 0.05
85
+ wandb_entity: diagonalge-corcel-io
86
+ wandb_mode: online
87
+ wandb_project: Public_TuningSN
88
+ wandb_run: miner_id_24
89
+ wandb_runid: aec496bb-64b4-44c8-b67a-502d6d9f8401
90
+ warmup_steps: 10
91
+ weight_decay: 0.0
92
+ xformers_attention: null
93
+
94
+ ```
95
+
96
+ </details><br>
97
+
98
+ # aec496bb-64b4-44c8-b67a-502d6d9f8401
99
+
100
+ This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset.
101
+ It achieves the following results on the evaluation set:
102
+ - Loss: 2.7089
103
+
104
+ ## Model description
105
+
106
+ More information needed
107
+
108
+ ## Intended uses & limitations
109
+
110
+ More information needed
111
+
112
+ ## Training and evaluation data
113
+
114
+ More information needed
115
+
116
+ ## Training procedure
117
+
118
+ ### Training hyperparameters
119
+
120
+ The following hyperparameters were used during training:
121
+ - learning_rate: 0.0002
122
+ - train_batch_size: 2
123
+ - eval_batch_size: 2
124
+ - seed: 42
125
+ - gradient_accumulation_steps: 4
126
+ - total_train_batch_size: 8
127
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
128
+ - lr_scheduler_type: cosine
129
+ - lr_scheduler_warmup_steps: 10
130
+ - training_steps: 10
131
+
132
+ ### Training results
133
+
134
+ | Training Loss | Epoch | Step | Validation Loss |
135
+ |:-------------:|:------:|:----:|:---------------:|
136
+ | 3.1717 | 0.0001 | 1 | 3.0266 |
137
+ | 3.0005 | 0.0002 | 3 | 3.0119 |
138
+ | 2.6919 | 0.0005 | 6 | 2.8419 |
139
+ | 2.492 | 0.0007 | 9 | 2.7089 |
140
+
141
+
142
+ ### Framework versions
143
+
144
+ - PEFT 0.13.2
145
+ - Transformers 4.45.2
146
+ - Pytorch 2.4.1+cu124
147
+ - Datasets 3.0.1
148
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad074812da3dd0c36d62a033228635b60b67e2893f1df81f0fc5f70108db3eab
3
+ size 167934026