Shaltiel commited on
Commit
479957e
1 Parent(s): 1915b64

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -7
README.md CHANGED
@@ -36,7 +36,6 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
36
  import torch
37
 
38
  tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictalm-7b-instruct')
39
- # If you don't have cuda installed, remove the `.cuda()` call at the end
40
  model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-7b-instruct', trust_remote_code=True).cuda()
41
 
42
  model.eval()
@@ -56,6 +55,11 @@ with torch.inference_mode():
56
  print(tokenizer.batch_decode(model.generate(**kwargs), skip_special_tokens=True))
57
  ```
58
 
 
 
 
 
 
59
  ### Alternative ways to initialize the model:
60
 
61
  If you have multiple smaller GPUs, and the package `accelerate` is installed, you can initialize the model split across the devices:
@@ -74,12 +78,6 @@ model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-7b-instruct', tru
74
  ```
75
 
76
 
77
-
78
- There are many different parameters you can input into `kwargs` for different results (greedy, beamsearch, different samplign configurations, longer/shorter respones, etc.).
79
-
80
- You can view the full list of parameters you can pass to the `generate` function [here](https://huggingface.co/docs/transformers/v4.33.0/en/main_classes/text_generation#transformers.GenerationMixin.generate).
81
-
82
-
83
  ## Citation
84
 
85
  If you use DictaLM in your research, please cite ```ADD CITATION HERE```
 
36
  import torch
37
 
38
  tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictalm-7b-instruct')
 
39
  model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-7b-instruct', trust_remote_code=True).cuda()
40
 
41
  model.eval()
 
55
  print(tokenizer.batch_decode(model.generate(**kwargs), skip_special_tokens=True))
56
  ```
57
 
58
+
59
+ There are many different parameters you can input into `kwargs` for different results (greedy, beamsearch, different samplign configurations, longer/shorter respones, etc.).
60
+
61
+ You can view the full list of parameters you can pass to the `generate` function [here](https://huggingface.co/docs/transformers/v4.33.0/en/main_classes/text_generation#transformers.GenerationMixin.generate).
62
+
63
  ### Alternative ways to initialize the model:
64
 
65
  If you have multiple smaller GPUs, and the package `accelerate` is installed, you can initialize the model split across the devices:
 
78
  ```
79
 
80
 
 
 
 
 
 
 
81
  ## Citation
82
 
83
  If you use DictaLM in your research, please cite ```ADD CITATION HERE```