patrickvonplaten
commited on
Commit
•
ea151b9
1
Parent(s):
056c912
add
Browse files- bench.py +27 -0
- control_net.py +53 -0
- safetensors_bench.py +16 -0
bench.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import sys
|
6 |
+
|
7 |
+
path = sys.argv[1]
|
8 |
+
use_device_map = bool(int(sys.argv[2]))
|
9 |
+
|
10 |
+
start_time = time.time()
|
11 |
+
|
12 |
+
if use_device_map:
|
13 |
+
print("Load directly on GPU")
|
14 |
+
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, device_map="auto")
|
15 |
+
else:
|
16 |
+
print("Load directly on CPU")
|
17 |
+
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
18 |
+
pipe = pipe.to("cuda")
|
19 |
+
|
20 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
21 |
+
|
22 |
+
prompt = "a highly realistic photo of green turtle"
|
23 |
+
|
24 |
+
print("Loading Time", time.time() - start_time)
|
25 |
+
generator = torch.Generator(device="cuda").manual_seed(0)
|
26 |
+
image = pipe(prompt, generator=generator, num_inference_steps=15).images[0]
|
27 |
+
print("Time", time.time() - start_time)
|
control_net.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
from huggingface_hub import HfApi
|
6 |
+
from pathlib import Path
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
from diffusers.utils import load_image
|
10 |
+
|
11 |
+
from diffusers import (
|
12 |
+
ControlNetModel,
|
13 |
+
StableDiffusionControlNetPipeline,
|
14 |
+
UniPCMultistepScheduler,
|
15 |
+
)
|
16 |
+
|
17 |
+
image = load_image(
|
18 |
+
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
|
19 |
+
)
|
20 |
+
|
21 |
+
image = np.array(image)
|
22 |
+
|
23 |
+
low_threshold = 100
|
24 |
+
high_threshold = 200
|
25 |
+
|
26 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
27 |
+
image = image[:, :, None]
|
28 |
+
image = np.concatenate([image, image, image], axis=2)
|
29 |
+
canny_image = Image.fromarray(image)
|
30 |
+
|
31 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
32 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
33 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
34 |
+
)
|
35 |
+
|
36 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
37 |
+
pipe.enable_model_cpu_offload()
|
38 |
+
|
39 |
+
generator = torch.manual_seed(0)
|
40 |
+
out_image = pipe("futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image).images[0]
|
41 |
+
|
42 |
+
path = os.path.join(Path.home(), "images", "aa.png")
|
43 |
+
out_image.save(path)
|
44 |
+
|
45 |
+
api = HfApi()
|
46 |
+
|
47 |
+
api.upload_file(
|
48 |
+
path_or_fileobj=path,
|
49 |
+
path_in_repo=path.split("/")[-1],
|
50 |
+
repo_id="patrickvonplaten/images",
|
51 |
+
repo_type="dataset",
|
52 |
+
)
|
53 |
+
print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
|
safetensors_bench.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from safetensors.torch import load_file as safe_load_file
|
3 |
+
import time
|
4 |
+
import sys
|
5 |
+
|
6 |
+
direct_on_gpu = bool(int(sys.argv[1]))
|
7 |
+
|
8 |
+
if direct_on_gpu:
|
9 |
+
start_time = time.time()
|
10 |
+
checkpoint = safe_load_file("/home/patrick_huggingface_co/stable-diffusion-v1-4/unet/diffusion_pytorch_model.safetensors", device=0)
|
11 |
+
print("Directly on GPU", time.time() - start_time)
|
12 |
+
else:
|
13 |
+
start_time = time.time()
|
14 |
+
checkpoint = safe_load_file("/home/patrick_huggingface_co/stable-diffusion-v1-4/unet/diffusion_pytorch_model.safetensors")
|
15 |
+
checkpoint = {k: v.to("cuda:0") for k, v in checkpoint.items()}
|
16 |
+
print("On CPU", time.time() - start_time)
|