diogopaes10 commited on
Commit
88b8f76
1 Parent(s): fa2db8e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: 012-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 012-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.9425
24
+ - F1: 0.7138
25
+ - Accuracy: 0.718
26
+ - Precision: 0.7184
27
+ - Recall: 0.718
28
+ - System Ram Used: 4.1370
29
+ - System Ram Total: 83.4807
30
+ - Gpu Ram Allocated: 2.0897
31
+ - Gpu Ram Cached: 25.8555
32
+ - Gpu Ram Total: 39.5640
33
+ - Gpu Utilization: 46
34
+ - Disk Space Used: 29.6434
35
+ - Disk Space Total: 78.1898
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 5
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
65
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
66
+ | 2.2963 | 0.2 | 50 | 2.2150 | 0.1298 | 0.2015 | 0.2090 | 0.2015 | 3.9807 | 83.4807 | 2.0898 | 25.8457 | 39.5640 | 48 | 24.8073 | 78.1898 |
67
+ | 1.8843 | 0.4 | 100 | 1.4590 | 0.5588 | 0.592 | 0.6418 | 0.592 | 3.9979 | 83.4807 | 2.0898 | 25.8477 | 39.5640 | 49 | 24.8074 | 78.1898 |
68
+ | 1.3348 | 0.6 | 150 | 1.1809 | 0.6613 | 0.668 | 0.6736 | 0.668 | 3.9836 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 24.8074 | 78.1898 |
69
+ | 1.1501 | 0.8 | 200 | 1.0484 | 0.6929 | 0.695 | 0.6981 | 0.695 | 3.9695 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 51 | 24.8074 | 78.1898 |
70
+ | 1.0842 | 1.0 | 250 | 1.0265 | 0.6825 | 0.6905 | 0.6894 | 0.6905 | 3.9755 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 24.8075 | 78.1898 |
71
+ | 0.8618 | 1.2 | 300 | 0.9904 | 0.7024 | 0.704 | 0.7048 | 0.704 | 3.9708 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 24.8075 | 78.1898 |
72
+ | 0.9329 | 1.4 | 350 | 0.9927 | 0.6825 | 0.686 | 0.6939 | 0.686 | 3.9595 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8076 | 78.1898 |
73
+ | 0.9053 | 1.6 | 400 | 0.9795 | 0.7021 | 0.705 | 0.7048 | 0.705 | 3.9837 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8076 | 78.1898 |
74
+ | 0.9173 | 1.8 | 450 | 0.9749 | 0.7024 | 0.709 | 0.7140 | 0.709 | 3.9851 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8077 | 78.1898 |
75
+ | 0.9189 | 2.0 | 500 | 0.9425 | 0.7138 | 0.718 | 0.7184 | 0.718 | 3.9949 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8077 | 78.1898 |
76
+ | 0.7727 | 2.2 | 550 | 0.9590 | 0.7101 | 0.7155 | 0.7150 | 0.7155 | 4.1847 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 45 | 29.6429 | 78.1898 |
77
+ | 0.7092 | 2.4 | 600 | 0.9389 | 0.7180 | 0.7215 | 0.7177 | 0.7215 | 4.1798 | 83.4807 | 2.0901 | 25.8555 | 39.5640 | 47 | 29.6429 | 78.1898 |
78
+ | 0.737 | 2.6 | 650 | 0.9606 | 0.7074 | 0.715 | 0.7144 | 0.715 | 4.1766 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 51 | 29.6430 | 78.1898 |
79
+ | 0.7334 | 2.8 | 700 | 0.9348 | 0.7175 | 0.72 | 0.7180 | 0.72 | 4.1699 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 29.6430 | 78.1898 |
80
+ | 0.7316 | 3.0 | 750 | 0.9407 | 0.7230 | 0.7275 | 0.7238 | 0.7275 | 4.1785 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 29.6431 | 78.1898 |
81
+ | 0.6045 | 3.2 | 800 | 0.9300 | 0.7208 | 0.721 | 0.7253 | 0.721 | 4.1864 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 29.6431 | 78.1898 |
82
+ | 0.6262 | 3.4 | 850 | 0.9416 | 0.7165 | 0.7175 | 0.7184 | 0.7175 | 4.1847 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 29.6431 | 78.1898 |
83
+ | 0.5999 | 3.6 | 900 | 0.9542 | 0.7155 | 0.718 | 0.7156 | 0.718 | 4.1891 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 47 | 29.6431 | 78.1898 |
84
+ | 0.6436 | 3.8 | 950 | 0.9580 | 0.7085 | 0.7115 | 0.7127 | 0.7115 | 4.1644 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 29.6431 | 78.1898 |
85
+ | 0.59 | 4.0 | 1000 | 0.9476 | 0.7209 | 0.723 | 0.7208 | 0.723 | 4.1608 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 47 | 29.6432 | 78.1898 |
86
+ | 0.5422 | 4.2 | 1050 | 0.9658 | 0.7201 | 0.7205 | 0.7224 | 0.7205 | 4.1462 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 46 | 31.7150 | 78.1898 |
87
+ | 0.5205 | 4.4 | 1100 | 0.9674 | 0.7122 | 0.7155 | 0.7128 | 0.7155 | 4.1598 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 31.7151 | 78.1898 |
88
+ | 0.5253 | 4.6 | 1150 | 0.9563 | 0.7175 | 0.7195 | 0.7185 | 0.7195 | 4.1854 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 31.7151 | 78.1898 |
89
+ | 0.5109 | 4.8 | 1200 | 0.9621 | 0.7201 | 0.722 | 0.7192 | 0.722 | 4.1908 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 31.7151 | 78.1898 |
90
+ | 0.5216 | 5.0 | 1250 | 0.9635 | 0.7190 | 0.7215 | 0.7189 | 0.7215 | 4.1862 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 31.7151 | 78.1898 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.31.0
96
+ - Pytorch 2.0.1+cu118
97
+ - Datasets 2.13.1
98
+ - Tokenizers 0.13.3