diogopaes10
commited on
Commit
•
88b8f76
1
Parent(s):
fa2db8e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: 012-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 012-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.9425
|
24 |
+
- F1: 0.7138
|
25 |
+
- Accuracy: 0.718
|
26 |
+
- Precision: 0.7184
|
27 |
+
- Recall: 0.718
|
28 |
+
- System Ram Used: 4.1370
|
29 |
+
- System Ram Total: 83.4807
|
30 |
+
- Gpu Ram Allocated: 2.0897
|
31 |
+
- Gpu Ram Cached: 25.8555
|
32 |
+
- Gpu Ram Total: 39.5640
|
33 |
+
- Gpu Utilization: 46
|
34 |
+
- Disk Space Used: 29.6434
|
35 |
+
- Disk Space Total: 78.1898
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
|
66 |
+
| 2.2963 | 0.2 | 50 | 2.2150 | 0.1298 | 0.2015 | 0.2090 | 0.2015 | 3.9807 | 83.4807 | 2.0898 | 25.8457 | 39.5640 | 48 | 24.8073 | 78.1898 |
|
67 |
+
| 1.8843 | 0.4 | 100 | 1.4590 | 0.5588 | 0.592 | 0.6418 | 0.592 | 3.9979 | 83.4807 | 2.0898 | 25.8477 | 39.5640 | 49 | 24.8074 | 78.1898 |
|
68 |
+
| 1.3348 | 0.6 | 150 | 1.1809 | 0.6613 | 0.668 | 0.6736 | 0.668 | 3.9836 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 24.8074 | 78.1898 |
|
69 |
+
| 1.1501 | 0.8 | 200 | 1.0484 | 0.6929 | 0.695 | 0.6981 | 0.695 | 3.9695 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 51 | 24.8074 | 78.1898 |
|
70 |
+
| 1.0842 | 1.0 | 250 | 1.0265 | 0.6825 | 0.6905 | 0.6894 | 0.6905 | 3.9755 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 24.8075 | 78.1898 |
|
71 |
+
| 0.8618 | 1.2 | 300 | 0.9904 | 0.7024 | 0.704 | 0.7048 | 0.704 | 3.9708 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 24.8075 | 78.1898 |
|
72 |
+
| 0.9329 | 1.4 | 350 | 0.9927 | 0.6825 | 0.686 | 0.6939 | 0.686 | 3.9595 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8076 | 78.1898 |
|
73 |
+
| 0.9053 | 1.6 | 400 | 0.9795 | 0.7021 | 0.705 | 0.7048 | 0.705 | 3.9837 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8076 | 78.1898 |
|
74 |
+
| 0.9173 | 1.8 | 450 | 0.9749 | 0.7024 | 0.709 | 0.7140 | 0.709 | 3.9851 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8077 | 78.1898 |
|
75 |
+
| 0.9189 | 2.0 | 500 | 0.9425 | 0.7138 | 0.718 | 0.7184 | 0.718 | 3.9949 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 24.8077 | 78.1898 |
|
76 |
+
| 0.7727 | 2.2 | 550 | 0.9590 | 0.7101 | 0.7155 | 0.7150 | 0.7155 | 4.1847 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 45 | 29.6429 | 78.1898 |
|
77 |
+
| 0.7092 | 2.4 | 600 | 0.9389 | 0.7180 | 0.7215 | 0.7177 | 0.7215 | 4.1798 | 83.4807 | 2.0901 | 25.8555 | 39.5640 | 47 | 29.6429 | 78.1898 |
|
78 |
+
| 0.737 | 2.6 | 650 | 0.9606 | 0.7074 | 0.715 | 0.7144 | 0.715 | 4.1766 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 51 | 29.6430 | 78.1898 |
|
79 |
+
| 0.7334 | 2.8 | 700 | 0.9348 | 0.7175 | 0.72 | 0.7180 | 0.72 | 4.1699 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 29.6430 | 78.1898 |
|
80 |
+
| 0.7316 | 3.0 | 750 | 0.9407 | 0.7230 | 0.7275 | 0.7238 | 0.7275 | 4.1785 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 29.6431 | 78.1898 |
|
81 |
+
| 0.6045 | 3.2 | 800 | 0.9300 | 0.7208 | 0.721 | 0.7253 | 0.721 | 4.1864 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 48 | 29.6431 | 78.1898 |
|
82 |
+
| 0.6262 | 3.4 | 850 | 0.9416 | 0.7165 | 0.7175 | 0.7184 | 0.7175 | 4.1847 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 29.6431 | 78.1898 |
|
83 |
+
| 0.5999 | 3.6 | 900 | 0.9542 | 0.7155 | 0.718 | 0.7156 | 0.718 | 4.1891 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 47 | 29.6431 | 78.1898 |
|
84 |
+
| 0.6436 | 3.8 | 950 | 0.9580 | 0.7085 | 0.7115 | 0.7127 | 0.7115 | 4.1644 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 29.6431 | 78.1898 |
|
85 |
+
| 0.59 | 4.0 | 1000 | 0.9476 | 0.7209 | 0.723 | 0.7208 | 0.723 | 4.1608 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 47 | 29.6432 | 78.1898 |
|
86 |
+
| 0.5422 | 4.2 | 1050 | 0.9658 | 0.7201 | 0.7205 | 0.7224 | 0.7205 | 4.1462 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 46 | 31.7150 | 78.1898 |
|
87 |
+
| 0.5205 | 4.4 | 1100 | 0.9674 | 0.7122 | 0.7155 | 0.7128 | 0.7155 | 4.1598 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 31.7151 | 78.1898 |
|
88 |
+
| 0.5253 | 4.6 | 1150 | 0.9563 | 0.7175 | 0.7195 | 0.7185 | 0.7195 | 4.1854 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 31.7151 | 78.1898 |
|
89 |
+
| 0.5109 | 4.8 | 1200 | 0.9621 | 0.7201 | 0.722 | 0.7192 | 0.722 | 4.1908 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 49 | 31.7151 | 78.1898 |
|
90 |
+
| 0.5216 | 5.0 | 1250 | 0.9635 | 0.7190 | 0.7215 | 0.7189 | 0.7215 | 4.1862 | 83.4807 | 2.0898 | 25.8555 | 39.5640 | 50 | 31.7151 | 78.1898 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.31.0
|
96 |
+
- Pytorch 2.0.1+cu118
|
97 |
+
- Datasets 2.13.1
|
98 |
+
- Tokenizers 0.13.3
|