diogopaes10
commited on
Commit
•
993905d
1
Parent(s):
e510e24
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: 015-microsoft-deberta-v3-base-finetuned-yahoo-80_20
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 015-microsoft-deberta-v3-base-finetuned-yahoo-80_20
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 2.0709
|
24 |
+
- F1: 0.2744
|
25 |
+
- Accuracy: 0.35
|
26 |
+
- Precision: 0.2452
|
27 |
+
- Recall: 0.35
|
28 |
+
- System Ram Used: 3.9663
|
29 |
+
- System Ram Total: 83.4807
|
30 |
+
- Gpu Ram Allocated: 2.0874
|
31 |
+
- Gpu Ram Cached: 6.8516
|
32 |
+
- Gpu Ram Total: 39.5640
|
33 |
+
- Gpu Utilization: 14
|
34 |
+
- Disk Space Used: 24.7820
|
35 |
+
- Disk Space Total: 78.1898
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 40
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
|
66 |
+
| 2.3062 | 2.0 | 6 | 2.3028 | 0.025 | 0.1 | 0.0143 | 0.1 | 3.9009 | 83.4807 | 2.0874 | 6.8398 | 39.5640 | 51 | 24.7819 | 78.1898 |
|
67 |
+
| 2.304 | 4.0 | 12 | 2.3020 | 0.0722 | 0.15 | 0.0625 | 0.15 | 3.9032 | 83.4807 | 2.0873 | 6.8418 | 39.5640 | 56 | 24.7819 | 78.1898 |
|
68 |
+
| 2.2892 | 6.0 | 18 | 2.2997 | 0.0111 | 0.05 | 0.0063 | 0.05 | 3.9136 | 83.4807 | 2.0874 | 6.8418 | 39.5640 | 62 | 24.7819 | 78.1898 |
|
69 |
+
| 2.2729 | 8.0 | 24 | 2.2947 | 0.0190 | 0.1 | 0.0105 | 0.1 | 3.9411 | 83.4807 | 2.0873 | 6.8418 | 39.5640 | 56 | 24.7819 | 78.1898 |
|
70 |
+
| 2.2108 | 10.0 | 30 | 2.2843 | 0.0521 | 0.15 | 0.0333 | 0.15 | 3.9439 | 83.4807 | 2.0873 | 6.8418 | 39.5640 | 60 | 24.7819 | 78.1898 |
|
71 |
+
| 2.1482 | 12.0 | 36 | 2.2660 | 0.1417 | 0.2 | 0.1643 | 0.2 | 3.9451 | 83.4807 | 2.0873 | 6.8418 | 39.5640 | 48 | 24.7819 | 78.1898 |
|
72 |
+
| 2.0203 | 14.0 | 42 | 2.2328 | 0.2086 | 0.3 | 0.1617 | 0.3 | 3.9597 | 83.4807 | 2.0874 | 6.8418 | 39.5640 | 52 | 24.7819 | 78.1898 |
|
73 |
+
| 1.8707 | 16.0 | 48 | 2.2030 | 0.2019 | 0.3 | 0.1533 | 0.3 | 3.9691 | 83.4807 | 2.0873 | 6.8418 | 39.5640 | 55 | 24.7819 | 78.1898 |
|
74 |
+
| 1.701 | 18.0 | 54 | 2.1741 | 0.2638 | 0.35 | 0.2483 | 0.35 | 3.9705 | 83.4807 | 2.0873 | 6.8418 | 39.5640 | 58 | 24.7819 | 78.1898 |
|
75 |
+
| 1.5493 | 20.0 | 60 | 2.1379 | 0.2967 | 0.35 | 0.3 | 0.35 | 3.9699 | 83.4807 | 2.0874 | 6.8516 | 39.5640 | 57 | 24.7819 | 78.1898 |
|
76 |
+
| 1.4073 | 22.0 | 66 | 2.1232 | 0.2244 | 0.3 | 0.1952 | 0.3 | 3.9711 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 51 | 24.7819 | 78.1898 |
|
77 |
+
| 1.2447 | 24.0 | 72 | 2.1096 | 0.2344 | 0.3 | 0.2119 | 0.3 | 3.9705 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 49 | 24.7819 | 78.1898 |
|
78 |
+
| 1.155 | 26.0 | 78 | 2.0978 | 0.3178 | 0.4 | 0.3119 | 0.4 | 3.9663 | 83.4807 | 2.0874 | 6.8516 | 39.5640 | 56 | 24.7819 | 78.1898 |
|
79 |
+
| 1.0522 | 28.0 | 84 | 2.0805 | 0.2744 | 0.35 | 0.2452 | 0.35 | 3.9661 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 63 | 24.7820 | 78.1898 |
|
80 |
+
| 0.9741 | 30.0 | 90 | 2.0735 | 0.2744 | 0.35 | 0.2452 | 0.35 | 3.9575 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 59 | 24.7820 | 78.1898 |
|
81 |
+
| 0.9042 | 32.0 | 96 | 2.0793 | 0.2744 | 0.35 | 0.2452 | 0.35 | 3.9661 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 50 | 24.7820 | 78.1898 |
|
82 |
+
| 0.8497 | 34.0 | 102 | 2.0769 | 0.2744 | 0.35 | 0.2452 | 0.35 | 3.9654 | 83.4807 | 2.0874 | 6.8516 | 39.5640 | 58 | 24.7820 | 78.1898 |
|
83 |
+
| 0.8228 | 36.0 | 108 | 2.0736 | 0.2744 | 0.35 | 0.2452 | 0.35 | 3.9660 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 60 | 24.7820 | 78.1898 |
|
84 |
+
| 0.7908 | 38.0 | 114 | 2.0717 | 0.2744 | 0.35 | 0.2452 | 0.35 | 3.9659 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 59 | 24.7820 | 78.1898 |
|
85 |
+
| 0.7998 | 40.0 | 120 | 2.0709 | 0.2744 | 0.35 | 0.2452 | 0.35 | 3.9661 | 83.4807 | 2.0873 | 6.8516 | 39.5640 | 59 | 24.7820 | 78.1898 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.31.0
|
91 |
+
- Pytorch 2.0.1+cu118
|
92 |
+
- Datasets 2.13.1
|
93 |
+
- Tokenizers 0.13.3
|