|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
learn = load_learner('model_moblenet.h5') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
import os |
|
for root, dirs, files in os.walk(r'sample_images/'): |
|
for filename in files: |
|
print(filename) |
|
|
|
title = "Rice Disease Classifier" |
|
description = "A rice disease classifier that can detect 3 diseases - blast, blight, tungro" |
|
interpretation='default' |
|
examples = ["sample_images/"+file for file in files] |
|
article="<p style='text-align: center'><a href='https://dicksonneoh.com/' target='_blank'>Blog post</a></p>" |
|
enable_queue=True |
|
|
|
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(384, 384)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue, theme="grass").launch() |
|
|