dipteshkanojia commited on
Commit
ff5d52a
1 Parent(s): 76dafff

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: hing-roberta-NCM-run-3
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hing-roberta-NCM-run-3
19
+
20
+ This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 3.2053
23
+ - Accuracy: 0.6645
24
+ - Precision: 0.6565
25
+ - Recall: 0.6479
26
+ - F1: 0.6505
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.9077 | 1.0 | 927 | 0.8070 | 0.6397 | 0.6581 | 0.6439 | 0.6382 |
58
+ | 0.6915 | 2.0 | 1854 | 0.8635 | 0.6462 | 0.6368 | 0.6439 | 0.6357 |
59
+ | 0.4785 | 3.0 | 2781 | 1.0961 | 0.6613 | 0.6510 | 0.6556 | 0.6505 |
60
+ | 0.3356 | 4.0 | 3708 | 1.6867 | 0.6667 | 0.6623 | 0.6611 | 0.6595 |
61
+ | 0.2622 | 5.0 | 4635 | 2.0271 | 0.6602 | 0.6589 | 0.6451 | 0.6482 |
62
+ | 0.1957 | 6.0 | 5562 | 2.2565 | 0.6634 | 0.6763 | 0.6517 | 0.6541 |
63
+ | 0.1419 | 7.0 | 6489 | 2.4627 | 0.6440 | 0.6487 | 0.6203 | 0.6230 |
64
+ | 0.1126 | 8.0 | 7416 | 2.7844 | 0.6483 | 0.6347 | 0.6268 | 0.6295 |
65
+ | 0.091 | 9.0 | 8343 | 2.8776 | 0.6440 | 0.6302 | 0.6315 | 0.6307 |
66
+ | 0.0758 | 10.0 | 9270 | 3.0246 | 0.6451 | 0.6325 | 0.6227 | 0.6256 |
67
+ | 0.0674 | 11.0 | 10197 | 2.9389 | 0.6721 | 0.6605 | 0.6501 | 0.6530 |
68
+ | 0.0542 | 12.0 | 11124 | 3.0503 | 0.6429 | 0.6456 | 0.6315 | 0.6330 |
69
+ | 0.0576 | 13.0 | 12051 | 3.0252 | 0.6483 | 0.6427 | 0.6435 | 0.6398 |
70
+ | 0.0337 | 14.0 | 12978 | 3.1160 | 0.6731 | 0.6676 | 0.6545 | 0.6575 |
71
+ | 0.0318 | 15.0 | 13905 | 3.0740 | 0.6807 | 0.6733 | 0.6647 | 0.6671 |
72
+ | 0.0188 | 16.0 | 14832 | 3.0890 | 0.6721 | 0.6633 | 0.6574 | 0.6589 |
73
+ | 0.0258 | 17.0 | 15759 | 3.1519 | 0.6634 | 0.6602 | 0.6456 | 0.6490 |
74
+ | 0.017 | 18.0 | 16686 | 3.1503 | 0.6688 | 0.6638 | 0.6547 | 0.6568 |
75
+ | 0.0146 | 19.0 | 17613 | 3.2083 | 0.6688 | 0.6621 | 0.6516 | 0.6545 |
76
+ | 0.0125 | 20.0 | 18540 | 3.2053 | 0.6645 | 0.6565 | 0.6479 | 0.6505 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.10.1+cu111
83
+ - Datasets 2.3.2
84
+ - Tokenizers 0.12.1