dipteshkanojia
commited on
Commit
•
ff5d52a
1
Parent(s):
76dafff
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: hing-roberta-NCM-run-3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# hing-roberta-NCM-run-3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.2053
|
23 |
+
- Accuracy: 0.6645
|
24 |
+
- Precision: 0.6565
|
25 |
+
- Recall: 0.6479
|
26 |
+
- F1: 0.6505
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.9077 | 1.0 | 927 | 0.8070 | 0.6397 | 0.6581 | 0.6439 | 0.6382 |
|
58 |
+
| 0.6915 | 2.0 | 1854 | 0.8635 | 0.6462 | 0.6368 | 0.6439 | 0.6357 |
|
59 |
+
| 0.4785 | 3.0 | 2781 | 1.0961 | 0.6613 | 0.6510 | 0.6556 | 0.6505 |
|
60 |
+
| 0.3356 | 4.0 | 3708 | 1.6867 | 0.6667 | 0.6623 | 0.6611 | 0.6595 |
|
61 |
+
| 0.2622 | 5.0 | 4635 | 2.0271 | 0.6602 | 0.6589 | 0.6451 | 0.6482 |
|
62 |
+
| 0.1957 | 6.0 | 5562 | 2.2565 | 0.6634 | 0.6763 | 0.6517 | 0.6541 |
|
63 |
+
| 0.1419 | 7.0 | 6489 | 2.4627 | 0.6440 | 0.6487 | 0.6203 | 0.6230 |
|
64 |
+
| 0.1126 | 8.0 | 7416 | 2.7844 | 0.6483 | 0.6347 | 0.6268 | 0.6295 |
|
65 |
+
| 0.091 | 9.0 | 8343 | 2.8776 | 0.6440 | 0.6302 | 0.6315 | 0.6307 |
|
66 |
+
| 0.0758 | 10.0 | 9270 | 3.0246 | 0.6451 | 0.6325 | 0.6227 | 0.6256 |
|
67 |
+
| 0.0674 | 11.0 | 10197 | 2.9389 | 0.6721 | 0.6605 | 0.6501 | 0.6530 |
|
68 |
+
| 0.0542 | 12.0 | 11124 | 3.0503 | 0.6429 | 0.6456 | 0.6315 | 0.6330 |
|
69 |
+
| 0.0576 | 13.0 | 12051 | 3.0252 | 0.6483 | 0.6427 | 0.6435 | 0.6398 |
|
70 |
+
| 0.0337 | 14.0 | 12978 | 3.1160 | 0.6731 | 0.6676 | 0.6545 | 0.6575 |
|
71 |
+
| 0.0318 | 15.0 | 13905 | 3.0740 | 0.6807 | 0.6733 | 0.6647 | 0.6671 |
|
72 |
+
| 0.0188 | 16.0 | 14832 | 3.0890 | 0.6721 | 0.6633 | 0.6574 | 0.6589 |
|
73 |
+
| 0.0258 | 17.0 | 15759 | 3.1519 | 0.6634 | 0.6602 | 0.6456 | 0.6490 |
|
74 |
+
| 0.017 | 18.0 | 16686 | 3.1503 | 0.6688 | 0.6638 | 0.6547 | 0.6568 |
|
75 |
+
| 0.0146 | 19.0 | 17613 | 3.2083 | 0.6688 | 0.6621 | 0.6516 | 0.6545 |
|
76 |
+
| 0.0125 | 20.0 | 18540 | 3.2053 | 0.6645 | 0.6565 | 0.6479 | 0.6505 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.20.1
|
82 |
+
- Pytorch 1.10.1+cu111
|
83 |
+
- Datasets 2.3.2
|
84 |
+
- Tokenizers 0.12.1
|