dipteshkanojia's picture
Librarian Bot: Add base_model information to model (#1)
4929a20
|
raw
history blame
3.32 kB
metadata
license: cc-by-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: l3cube-pune/hing-roberta
model-index:
  - name: hing-roberta-NCM-run-4
    results: []

hing-roberta-NCM-run-4

This model is a fine-tuned version of l3cube-pune/hing-roberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3405
  • Accuracy: 0.6505
  • Precision: 0.6410
  • Recall: 0.6318
  • F1: 0.6350

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8975 1.0 927 0.9553 0.6127 0.5994 0.6026 0.5930
0.6924 2.0 1854 0.8426 0.6505 0.6535 0.6344 0.6372
0.472 3.0 2781 1.0533 0.6570 0.6449 0.6442 0.6442
0.3271 4.0 3708 1.8111 0.6624 0.6635 0.6407 0.6448
0.2368 5.0 4635 2.1234 0.6483 0.6297 0.6288 0.6267
0.172 6.0 5562 2.5340 0.6419 0.6312 0.6164 0.6199
0.1251 7.0 6489 2.5758 0.6472 0.6405 0.6311 0.6336
0.0943 8.0 7416 2.9090 0.6332 0.6337 0.6090 0.6124
0.0919 9.0 8343 2.8236 0.6494 0.6394 0.6301 0.6329
0.0851 10.0 9270 2.9368 0.6570 0.6448 0.6405 0.6422
0.0602 11.0 10197 3.2925 0.6289 0.6221 0.6111 0.6140
0.0551 12.0 11124 3.1185 0.6397 0.6239 0.6108 0.6131
0.0498 13.0 12051 3.0170 0.6559 0.6400 0.6322 0.6341
0.0309 14.0 12978 3.0934 0.6537 0.6481 0.6386 0.6410
0.0303 15.0 13905 3.1530 0.6440 0.6292 0.6258 0.6272
0.028 16.0 14832 3.1491 0.6570 0.6502 0.6346 0.6385
0.0199 17.0 15759 3.2515 0.6526 0.6394 0.6295 0.6324
0.0245 18.0 16686 3.2644 0.6526 0.6494 0.6315 0.6356
0.0159 19.0 17613 3.3344 0.6483 0.6377 0.6295 0.6324
0.0116 20.0 18540 3.3405 0.6505 0.6410 0.6318 0.6350

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1