dipteshkanojia
commited on
Commit
•
867831f
1
Parent(s):
2deeb79
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: hing-roberta-NCM-run-4
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# hing-roberta-NCM-run-4
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.3405
|
23 |
+
- Accuracy: 0.6505
|
24 |
+
- Precision: 0.6410
|
25 |
+
- Recall: 0.6318
|
26 |
+
- F1: 0.6350
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.8975 | 1.0 | 927 | 0.9553 | 0.6127 | 0.5994 | 0.6026 | 0.5930 |
|
58 |
+
| 0.6924 | 2.0 | 1854 | 0.8426 | 0.6505 | 0.6535 | 0.6344 | 0.6372 |
|
59 |
+
| 0.472 | 3.0 | 2781 | 1.0533 | 0.6570 | 0.6449 | 0.6442 | 0.6442 |
|
60 |
+
| 0.3271 | 4.0 | 3708 | 1.8111 | 0.6624 | 0.6635 | 0.6407 | 0.6448 |
|
61 |
+
| 0.2368 | 5.0 | 4635 | 2.1234 | 0.6483 | 0.6297 | 0.6288 | 0.6267 |
|
62 |
+
| 0.172 | 6.0 | 5562 | 2.5340 | 0.6419 | 0.6312 | 0.6164 | 0.6199 |
|
63 |
+
| 0.1251 | 7.0 | 6489 | 2.5758 | 0.6472 | 0.6405 | 0.6311 | 0.6336 |
|
64 |
+
| 0.0943 | 8.0 | 7416 | 2.9090 | 0.6332 | 0.6337 | 0.6090 | 0.6124 |
|
65 |
+
| 0.0919 | 9.0 | 8343 | 2.8236 | 0.6494 | 0.6394 | 0.6301 | 0.6329 |
|
66 |
+
| 0.0851 | 10.0 | 9270 | 2.9368 | 0.6570 | 0.6448 | 0.6405 | 0.6422 |
|
67 |
+
| 0.0602 | 11.0 | 10197 | 3.2925 | 0.6289 | 0.6221 | 0.6111 | 0.6140 |
|
68 |
+
| 0.0551 | 12.0 | 11124 | 3.1185 | 0.6397 | 0.6239 | 0.6108 | 0.6131 |
|
69 |
+
| 0.0498 | 13.0 | 12051 | 3.0170 | 0.6559 | 0.6400 | 0.6322 | 0.6341 |
|
70 |
+
| 0.0309 | 14.0 | 12978 | 3.0934 | 0.6537 | 0.6481 | 0.6386 | 0.6410 |
|
71 |
+
| 0.0303 | 15.0 | 13905 | 3.1530 | 0.6440 | 0.6292 | 0.6258 | 0.6272 |
|
72 |
+
| 0.028 | 16.0 | 14832 | 3.1491 | 0.6570 | 0.6502 | 0.6346 | 0.6385 |
|
73 |
+
| 0.0199 | 17.0 | 15759 | 3.2515 | 0.6526 | 0.6394 | 0.6295 | 0.6324 |
|
74 |
+
| 0.0245 | 18.0 | 16686 | 3.2644 | 0.6526 | 0.6494 | 0.6315 | 0.6356 |
|
75 |
+
| 0.0159 | 19.0 | 17613 | 3.3344 | 0.6483 | 0.6377 | 0.6295 | 0.6324 |
|
76 |
+
| 0.0116 | 20.0 | 18540 | 3.3405 | 0.6505 | 0.6410 | 0.6318 | 0.6350 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.20.1
|
82 |
+
- Pytorch 1.10.1+cu111
|
83 |
+
- Datasets 2.3.2
|
84 |
+
- Tokenizers 0.12.1
|