dipteshkanojia commited on
Commit
867831f
1 Parent(s): 2deeb79

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: hing-roberta-NCM-run-4
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hing-roberta-NCM-run-4
19
+
20
+ This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 3.3405
23
+ - Accuracy: 0.6505
24
+ - Precision: 0.6410
25
+ - Recall: 0.6318
26
+ - F1: 0.6350
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.8975 | 1.0 | 927 | 0.9553 | 0.6127 | 0.5994 | 0.6026 | 0.5930 |
58
+ | 0.6924 | 2.0 | 1854 | 0.8426 | 0.6505 | 0.6535 | 0.6344 | 0.6372 |
59
+ | 0.472 | 3.0 | 2781 | 1.0533 | 0.6570 | 0.6449 | 0.6442 | 0.6442 |
60
+ | 0.3271 | 4.0 | 3708 | 1.8111 | 0.6624 | 0.6635 | 0.6407 | 0.6448 |
61
+ | 0.2368 | 5.0 | 4635 | 2.1234 | 0.6483 | 0.6297 | 0.6288 | 0.6267 |
62
+ | 0.172 | 6.0 | 5562 | 2.5340 | 0.6419 | 0.6312 | 0.6164 | 0.6199 |
63
+ | 0.1251 | 7.0 | 6489 | 2.5758 | 0.6472 | 0.6405 | 0.6311 | 0.6336 |
64
+ | 0.0943 | 8.0 | 7416 | 2.9090 | 0.6332 | 0.6337 | 0.6090 | 0.6124 |
65
+ | 0.0919 | 9.0 | 8343 | 2.8236 | 0.6494 | 0.6394 | 0.6301 | 0.6329 |
66
+ | 0.0851 | 10.0 | 9270 | 2.9368 | 0.6570 | 0.6448 | 0.6405 | 0.6422 |
67
+ | 0.0602 | 11.0 | 10197 | 3.2925 | 0.6289 | 0.6221 | 0.6111 | 0.6140 |
68
+ | 0.0551 | 12.0 | 11124 | 3.1185 | 0.6397 | 0.6239 | 0.6108 | 0.6131 |
69
+ | 0.0498 | 13.0 | 12051 | 3.0170 | 0.6559 | 0.6400 | 0.6322 | 0.6341 |
70
+ | 0.0309 | 14.0 | 12978 | 3.0934 | 0.6537 | 0.6481 | 0.6386 | 0.6410 |
71
+ | 0.0303 | 15.0 | 13905 | 3.1530 | 0.6440 | 0.6292 | 0.6258 | 0.6272 |
72
+ | 0.028 | 16.0 | 14832 | 3.1491 | 0.6570 | 0.6502 | 0.6346 | 0.6385 |
73
+ | 0.0199 | 17.0 | 15759 | 3.2515 | 0.6526 | 0.6394 | 0.6295 | 0.6324 |
74
+ | 0.0245 | 18.0 | 16686 | 3.2644 | 0.6526 | 0.6494 | 0.6315 | 0.6356 |
75
+ | 0.0159 | 19.0 | 17613 | 3.3344 | 0.6483 | 0.6377 | 0.6295 | 0.6324 |
76
+ | 0.0116 | 20.0 | 18540 | 3.3405 | 0.6505 | 0.6410 | 0.6318 | 0.6350 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.10.1+cu111
83
+ - Datasets 2.3.2
84
+ - Tokenizers 0.12.1