---
base_model: gpt2
datasets:
- wikimedia/wikipedia
library_name: Distily
license: mit
tags:
- bitnet
- 1.58b
- generated_from_trainer
model-index:
- name: distily_multi_experiment
results: []
---
# Summary
Distilled with [Distily](https://github.com/lapp0/distily) library
using teacher model [gpt2](https://huggingface.co/gpt2)
on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).
# Model Architecture:
- **Architecture**: `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808
- **Data Type (dtype)**: torch.bfloat16
- **Model Size**: 0.24 GB
# Evaluation Metrics Comparison
| step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | tinystoriesppl | zhwikippl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| **teacher eval** | | 43.25 | 61.25 | | | | | 11.6875 | 19.125 |
| 0 | 0 | 2473901162496.0 | 170424302305280.0 | 22.7948 | 25.4866 | 98.091 | 12.281 | 4060086272.0 | 71468255805440.0 |
| 2500 | 0.0404 | 800.0 | 6240.0 | 2.9661 | 25.4278 | 98.318 | 12.309 | 470.0 | 5024.0 |
| 5000 | 0.0808 | 326.0 | 1480.0 | 2.1697 | 25.4996 | 98.041 | 12.275 | 247.0 | 278.0 |
| 7500 | 0.1212 | 224.0 | 804.0 | 1.8396 | 25.5448 | 97.867 | 12.253 | 185.0 | 190.0 |
| 10000 | 0.1616 | 171.0 | 608.0 | 1.6412 | 25.4672 | 98.165 | 12.29 | 145.0 | 166.0 |
| 12500 | 0.2020 | 127.0 | 482.0 | 1.3752 | 25.4897 | 98.079 | 12.279 | 111.0 | 141.0 |
| 15000 | 0.2424 | 104.5 | 436.0 | 1.2398 | 25.4711 | 98.15 | 12.288 | 93.5 | 99.5 |
| 17500 | 0.2828 | 90.5 | 346.0 | 1.1286 | 25.4723 | 98.146 | 12.288 | 74.0 | 147.0 |
| 20000 | 0.3232 | 81.5 | 312.0 | 1.0325 | 25.4627 | 98.183 | 12.293 | 69.5 | 111.0 |
| 22500 | 0.3636 | 73.0 | 236.0 | 0.9000 | 25.4791 | 98.12 | 12.285 | 59.75 | 100.0 |
| 25000 | 0.4040 | 67.0 | 209.0 | 0.8527 | 25.4728 | 98.144 | 12.288 | 53.0 | 183.0 |
| 27500 | 0.4444 | 64.0 | 228.0 | 0.8201 | 25.4859 | 98.094 | 12.281 | 48.0 | 105.5 |
| 30000 | 0.4848 | 64.5 | 225.0 | 0.8103 | 25.489 | 98.082 | 12.28 | 51.75 | 77.5 |
| 32500 | 0.5253 | 64.0 | 194.0 | 0.8016 | 25.4563 | 98.208 | 12.296 | 46.5 | 117.5 |
| 35000 | 0.5657 | 63.5 | 188.0 | 0.7395 | 25.4507 | 98.229 | 12.298 | 44.0 | 73.0 |
| 37500 | 0.6061 | 60.25 | 172.0 | 0.7164 | 25.411 | 98.382 | 12.317 | 45.5 | 68.5 |
| 40000 | 0.6465 | 59.5 | 180.0 | 0.7014 | 25.4454 | 98.25 | 12.301 | 41.25 | 94.5 |
| 42500 | 0.6869 | 58.25 | 168.0 | 0.6708 | 25.4719 | 98.147 | 12.288 | 42.0 | 65.5 |
| 45000 | 0.7273 | 53.75 | 158.0 | 0.5781 | 25.3987 | 98.43 | 12.323 | 35.25 | 67.5 |
| 47500 | 0.7677 | 54.0 | 136.0 | 0.5538 | 25.4465 | 98.245 | 12.3 | 34.0 | 41.75 |
| 50000 | 0.8081 | 52.25 | 136.0 | 0.5368 | 25.4472 | 98.243 | 12.3 | 33.0 | 41.0 |
| 52500 | 0.8485 | 50.75 | 131.0 | 0.5244 | 25.4589 | 98.198 | 12.294 | 33.25 | 38.25 |
| 55000 | 0.8889 | 50.0 | 128.0 | 0.5073 | 25.4565 | 98.207 | 12.295 | 32.0 | 35.5 |
| 57500 | 0.9293 | 49.75 | 127.0 | 0.5019 | 25.4729 | 98.143 | 12.288 | 31.75 | 33.5 |
| 60000 | 0.9697 | 49.75 | 126.5 | 0.4983 | 25.4379 | 98.279 | 12.304 | 31.5 | 33.75 |
| 61875 | 1.0 | 49.75 | 126.5 | 0.4979 | 25.4846 | 98.098 | 12.282 | 31.5 | 33.75 |
# Resource Usage Comparison
- VRAM Use: 7.7851 GB
# Distillation (Teacher -> Student) Architecture Difference:
- **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808 -> 124,439,808
- **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16
- **Model Size**: 0.24 GB -> 0.24 GB
Module Diff Details
```diff
```
# Train Dataset
Trained on 145,744,973 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.
- Num Samples: `247,500`
- Subset: `20231101.en`
- Split: `train`
# Training Objective
```
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=kl, layer_mapper=layer-2))
```
# Hyperparameters
The following hyperparameters were used during training:
Expand
- learning_rate: `0.0001`
- train_batch_size: `4`
- eval_batch_size: `8`
- seed: `42`
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
- lr_scheduler_type: `linear`
- lr_scheduler_warmup_ratio: `0.5`
- num_epochs: `1.0`
- distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=kl, layer_mapper=layer-2))`
- train_embeddings: `True`
- lr_scheduler: ``
- student_model_name_or_path: `None`
- student_config_name_or_path: `None`
- student_model_config: `None`
- reinitialize_weights: `None`
- copy_teacher_modules: `[('lm_head', False)]`
- student_model_as_bitnet: `True`
- student_model_compile: `False`
- dropout: `None`
- teacher_model_name_or_path: `gpt2`
- teacher_load_in_8bit: `False`
- teacher_load_in_4bit: `False`
- teacher_model_compile: `False`
- dataset_uri: `wikimedia/wikipedia`
- dataset_subset: `20231101.en`
- dataset_split: `train`
- dataset_column_name: `text`
- dataset_sample_size: `250000`
- dataset_test_size: `0.01`
- gradient_accumulation_steps: `1`
- weight_decay: `0.0`
- max_grad_norm: `1.0`
- warmup_ratio: `0.5`
- warmup_steps: `0`
- gradient_checkpointing: `True`
# Framework Versions
- Distily 0.2.0
- Transformers 4.44.1
- Pytorch 2.5.0.dev20240821+cu121
- Datasets 2.21.0