kmfoda commited on
Commit
0500801
1 Parent(s): 882ad6b

Add model configs

Browse files
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "distributed/optimized-gpt2-500m",
3
  "activation_function": "gelu_new",
4
  "architectures": [
5
  "GPTOptim"
 
1
  {
2
+ "_name_or_path": "distributed/optimized-gpt2-1b",
3
  "activation_function": "gelu_new",
4
  "architectures": [
5
  "GPTOptim"
configuration_gpt_optimized.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, GPT2Config
2
+ from typing import List
3
+
4
+
5
+ class GPTOptimConfig(GPT2Config):
6
+ model_type = "gpt_optimized"
7
+
8
+ def __init__(
9
+ self,
10
+ block_size: int = 1024, # max sequence length
11
+ vocab_size: int = 50257, # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
12
+ n_layer: int = 16, # number of layers
13
+ n_head: int = 16, # number of heads
14
+ n_embd: int = 1024, # embedding dimension
15
+ **kwargs,
16
+ ):
17
+ super().__init__(**kwargs)
18
+ self.block_size = block_size
19
+ self.vocab_size = vocab_size
20
+ self.n_layer = n_layer
21
+ self.n_head = n_head
22
+ self.n_embd = n_embd
modeling_gpt_optimized.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import CrossEntropyLoss, functional as F
4
+ from transformers import PreTrainedModel, GPT2PreTrainedModel
5
+ from .configuration_gpt_optimized import GPTOptimConfig
6
+ from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
7
+ from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
8
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
9
+ from typing import Optional, Tuple, Union
10
+
11
+ _CHECKPOINT_FOR_DOC = "openai-community/gpt2"
12
+ _CONFIG_FOR_DOC = "GPT2Config"
13
+
14
+ GPT2_INPUTS_DOCSTRING = r"""
15
+ Args:
16
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
17
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
18
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
19
+ sequence tokens in the vocabulary.
20
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
21
+ `input_ids`.
22
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
23
+ [`PreTrainedTokenizer.__call__`] for details.
24
+ [What are input IDs?](../glossary#input-ids)
25
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
26
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
27
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
28
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
29
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
30
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
31
+ - 1 for tokens that are **not masked**,
32
+ - 0 for tokens that are **masked**.
33
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
34
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
35
+ `len(past_key_values) + len(input_ids)`
36
+ [What are attention masks?](../glossary#attention-mask)
37
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
38
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
39
+ 1]`:
40
+ - 0 corresponds to a *sentence A* token,
41
+ - 1 corresponds to a *sentence B* token.
42
+ [What are token type IDs?](../glossary#token-type-ids)
43
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
44
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
45
+ config.max_position_embeddings - 1]`.
46
+ [What are position IDs?](../glossary#position-ids)
47
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
48
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
49
+ - 1 indicates the head is **not masked**,
50
+ - 0 indicates the head is **masked**.
51
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
52
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
53
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
54
+ model's internal embedding lookup matrix.
55
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
56
+ `past_key_values`).
57
+ use_cache (`bool`, *optional*):
58
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
59
+ `past_key_values`).
60
+ output_attentions (`bool`, *optional*):
61
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
62
+ tensors for more detail.
63
+ output_hidden_states (`bool`, *optional*):
64
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
65
+ more detail.
66
+ return_dict (`bool`, *optional*):
67
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
68
+ """
69
+
70
+ class CausalSelfAttention(nn.Module):
71
+
72
+ def __init__(self, config):
73
+ super().__init__()
74
+ assert config.n_embd % config.n_head == 0
75
+ # key, query, value projections for all heads, but in a batch
76
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
77
+ # output projection
78
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
79
+ self.c_proj.NANOGPT_SCALE_INIT = 1
80
+ # regularization
81
+ self.n_head = config.n_head
82
+ self.n_embd = config.n_embd
83
+
84
+ def forward(self, x):
85
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
86
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
87
+ # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
88
+ # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
89
+ qkv = self.c_attn(x)
90
+ q, k, v = qkv.split(self.n_embd, dim=2)
91
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
92
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
93
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
94
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
95
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
96
+ # output projection
97
+ y = self.c_proj(y)
98
+ return y
99
+
100
+ class MLP(nn.Module):
101
+
102
+ def __init__(self, config):
103
+ super().__init__()
104
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
105
+ self.gelu = nn.GELU(approximate='tanh')
106
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
107
+ self.c_proj.NANOGPT_SCALE_INIT = 1
108
+
109
+ def forward(self, x):
110
+ x = self.c_fc(x)
111
+ x = self.gelu(x)
112
+ x = self.c_proj(x)
113
+ return x
114
+
115
+ class Block(nn.Module):
116
+
117
+ def __init__(self, config):
118
+ super().__init__()
119
+ self.ln_1 = nn.LayerNorm(config.n_embd)
120
+ self.attn = CausalSelfAttention(config)
121
+ self.ln_2 = nn.LayerNorm(config.n_embd)
122
+ self.mlp = MLP(config)
123
+
124
+ def forward(self, x):
125
+ x = x + self.attn(self.ln_1(x))
126
+ x = x + self.mlp(self.ln_2(x))
127
+ return x
128
+
129
+ class GPT(nn.Module):
130
+
131
+ def __init__(self, config):
132
+ super().__init__()
133
+ self.config = config
134
+
135
+ self.transformer = nn.ModuleDict(dict(
136
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
137
+ wpe = nn.Embedding(config.block_size, config.n_embd),
138
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
139
+ ln_f = nn.LayerNorm(config.n_embd),
140
+ ))
141
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
142
+
143
+ # weight sharing scheme
144
+ self.transformer.wte.weight = self.lm_head.weight
145
+
146
+ # init params
147
+ self.apply(self._init_weights)
148
+
149
+ def _init_weights(self, module):
150
+ if isinstance(module, nn.Linear):
151
+ std = 0.02
152
+ if hasattr(module, 'NANOGPT_SCALE_INIT'):
153
+ std *= (2 * self.config.n_layer) ** -0.5
154
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
155
+ if module.bias is not None:
156
+ torch.nn.init.zeros_(module.bias)
157
+ elif isinstance(module, nn.Embedding):
158
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
159
+
160
+ class GPTOptim(GPT2PreTrainedModel):
161
+ config_class = GPTOptimConfig
162
+
163
+ def __init__(self, config):
164
+ super().__init__(config)
165
+ self.model = GPT(
166
+ config
167
+ )
168
+ self.config = config
169
+
170
+ def forward(self, input_ids, labels=None):
171
+ # input_ids is of shape (B, T)
172
+ B, T = input_ids.size()
173
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
174
+ # forward the token and posisition embeddings
175
+ pos = torch.arange(0, T, dtype=torch.long, device=input_ids.device) # shape (T)
176
+ pos_emb = self.model.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
177
+ tok_emb = self.model.transformer.wte(input_ids) # token embeddings of shape (B, T, n_embd)
178
+ x = tok_emb + pos_emb
179
+ # forward the blocks of the transformer
180
+ for block in self.model.transformer.h:
181
+ x = block(x)
182
+ # forward the final layernorm and the classifier
183
+ x = self.model.transformer.ln_f(x)
184
+ logits = self.model.lm_head(x) # (B, T, vocab_size)
185
+ loss = None
186
+ if labels is not None:
187
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=self.config.eos_token_id)
188
+ return logits, loss