Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

# See:
# - https://github.com/karpathy/nanoGPT/blob/master/config/train_gpt2.py#L1
# - https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/tiny-llama/pretrain.yml#L14
# - https://github.com/karpathy/nanoGPT/blob/master/train.py#L35

base_model: diwank/cryptgpt
hub_model_id: diwank/cryptgpt

model_type: GPT2LMHeadModel
tokenizer_type: AutoTokenizer
trust_remote_code: true  # required for CryptGPTTokenizer
resize_token_embeddings_to_32x: true
output_dir: ./outputs/model-out

datasets:
  - path: diwank/encrypted-openwebtext
    type: completion

dataset_prepared_path: ./cryptgpt-prepared-dataset
val_set_size: 0.04
shuffle_merged_datasets: false

sequence_len: 1024
pad_to_sequence_len: true
sample_packing: false
pretrain_multipack_attn: false
train_on_inputs: true

gradient_accumulation_steps: 1
micro_batch_size: 64
optimizer: adamw_bnb_8bit
adam_beta1: 0.9
adam_beta2: 0.95
seed: 42

lr_scheduler: cosine
learning_rate: 6e-4
cosine_min_lr_ratio: 0.1  # min: 6e-5
weight_decay: 0.1

bf16: auto
tf32: true
flash_attention: true
torch_compile: true
gradient_checkpointing: false
deepspeed: deepspeed_configs/zero2.json

max_steps: 1200000
eval_steps: 12000
save_steps: 12000
auto_resume_from_checkpoints: true
logging_steps: 1
eval_max_new_tokens: 128
eval_causal_lm_metrics: 
  - sacrebleu

wandb_project: cryptgpt-0.1
wandb_name: cryptgpt-run-07

cryptgpt

This model is a fine-tuned version of diwank/cryptgpt on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 512
  • total_eval_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 40912

Training results

Training Loss Epoch Step Validation Loss
10.9453 0.0000 1 10.9383
3.0117 0.2933 12000 2.8623
2.5234 0.5866 24000 2.4040
2.3398 0.8799 36000 2.2717

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
163M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for diwank/cryptgpt

Unable to build the model tree, the base model loops to the model itself. Learn more.