File size: 13,659 Bytes
9cbdf67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3844e6c
9cbdf67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# we have to evaluate emotion & cer per sentence -> not audinterface sliding window
import os
import audresample
import torch
import matplotlib.pyplot as plt
import soundfile
import json
import audb
from transformers import AutoModelForAudioClassification
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import types
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import pandas as pd
import json
import numpy as np
from pathlib import Path
import transformers
import torch
import audmodel
import audiofile
import jiwer
# https://arxiv.org/pdf/2407.12229
#  https://arxiv.org/pdf/2312.05187
# https://arxiv.org/abs/2407.05407
# https://arxiv.org/pdf/2408.06577
# https://arxiv.org/pdf/2309.07405
import msinference
import os
from random import shuffle

config = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
config.dev = torch.device('cuda:0')
config.dev2 = torch.device('cuda:0')




LABELS = ['arousal', 'dominance', 'valence',
           'Angry',
           'Sad',
           'Happy',
           'Surprise', 
            'Fear', 
            'Disgust', 
            'Contempt', 
            'Neutral'
            ]

config = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
config.dev = torch.device('cuda:0')
config.dev2 = torch.device('cuda:0')




    # https://arxiv.org/pdf/2407.12229
    #  https://arxiv.org/pdf/2312.05187
    # https://arxiv.org/abs/2407.05407
    # https://arxiv.org/pdf/2408.06577
    # https://arxiv.org/pdf/2309.07405

    
def _infer(self, x):
    '''x: (batch, audio-samples-16KHz)'''
    x = (x + self.config.mean) / self.config.std  # plus
    x = self.ssl_model(x, attention_mask=None).last_hidden_state
    # pool
    h = self.pool_model.sap_linear(x).tanh()
    w = torch.matmul(h, self.pool_model.attention)
    w = w.softmax(1)
    mu = (x * w).sum(1)
    x = torch.cat(
        [
            mu,
            ((x * x * w).sum(1) - mu * mu).clamp(min=1e-7).sqrt()
        ], 1)
    return self.ser_model(x)

teacher_cat = AutoModelForAudioClassification.from_pretrained(
    '3loi/SER-Odyssey-Baseline-WavLM-Categorical-Attributes',
    trust_remote_code=True  # fun definitions see 3loi/SER-.. repo
).to(config.dev2).eval()
teacher_cat.forward = types.MethodType(_infer, teacher_cat)


# ===================[:]===================== Dawn
def _prenorm(x, attention_mask=None):
    '''mean/var'''
    if attention_mask is not None:
        N = attention_mask.sum(1, keepdim=True)  # here attn msk is unprocessed just the original input
        x -= x.sum(1, keepdim=True) / N
        var = (x * x).sum(1, keepdim=True) / N

    else:
        x -= x.mean(1, keepdim=True)  # mean is an onnx operator reducemean saves some ops compared to casting integer N to float and the div
        var = (x * x).mean(1, keepdim=True)
    return x / torch.sqrt(var + 1e-7)

from torch import nn
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel, Wav2Vec2Model
class RegressionHead(nn.Module):
        r"""Classification head."""

        def __init__(self, config):

            super().__init__()

            self.dense = nn.Linear(config.hidden_size, config.hidden_size)
            self.dropout = nn.Dropout(config.final_dropout)
            self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

        def forward(self, features, **kwargs):

            x = features
            x = self.dropout(x)
            x = self.dense(x)
            x = torch.tanh(x)
            x = self.dropout(x)
            x = self.out_proj(x)

            return x


class Dawn(Wav2Vec2PreTrainedModel):
    r"""Speech emotion classifier."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = RegressionHead(config)
        self.init_weights()

    def forward(
            self,
            input_values,
            attention_mask=None,
    ):
        x = _prenorm(input_values, attention_mask=attention_mask)
        outputs = self.wav2vec2(x, attention_mask=attention_mask)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits = self.classifier(hidden_states)
        return logits
        # return {'hidden_states': hidden_states,
        #         'logits': logits}
dawn = Dawn.from_pretrained('audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim').to(config.dev).eval()
# =======================================











torch_dtype = torch.float16 #if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
).to(config.dev)
processor = AutoProcessor.from_pretrained(model_id)
_pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=config.dev,
)










def process_function(x, sampling_rate, idx):
    # x = x[None , :]  ASaHSuFDCN
    #  {0: 'Angry', 1: 'Sad', 2: 'Happy', 3: 'Surprise', 
    #  4: 'Fear', 5: 'Disgust', 6: 'Contempt', 7: 'Neutral'}
    #tensor([[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]])
    logits_cat = teacher_cat(torch.from_numpy(x).to(config.dev)).softmax(1)
    logits_adv = dawn(torch.from_numpy(x).to(config.dev))
    
    out = torch.cat([logits_adv,
                            logits_cat],
                            1).cpu().detach().numpy()
    # print(out.shape)
    return out[0, :]



def load_speech(split=None):
    DB = [
        # [dataset, version, table, has_timdeltas_or_is_full_wavfile]
          #  ['crema-d', '1.1.1', 'emotion.voice.test', False],
        #['librispeech', '3.1.0', 'test-clean', False],
            ['emodb',  '1.2.0', 'emotion.categories.train.gold_standard', False],
  #          ['entertain-playtestcloud', '1.1.0', 'emotion.categories.train.gold_standard', True],
   #         ['erik', '2.2.0', 'emotion.categories.train.gold_standard', True],
    #        ['meld', '1.3.1', 'emotion.categories.train.gold_standard', False],
            # ['msppodcast', '5.0.0', 'emotion.categories.train.gold_standard', False],  # tandalone bucket because it has gt labels?
     #       ['myai', '1.0.1', 'emotion.categories.train.gold_standard', False],
      #      ['casia', None, 'emotion.categories.gold_standard', False],
            # ['switchboard-1', None, 'sentiment', True],
            # ['swiss-parliament', None, 'segments', True], 
            # ['argentinian-parliament', None, 'segments', True],
            # ['austrian-parliament', None, 'segments', True],
            # #'german', --> bundestag
            # ['brazilian-parliament', None, 'segments', True],
            # ['mexican-parliament', None, 'segments', True],
            # ['portuguese-parliament', None, 'segments', True],
       #     ['spanish-parliament', None, 'segments', True],
        #    ['chinese-vocal-emotions-liu-pell', None, 'emotion.categories.desired', False],
            # peoples-speech slow
         #   ['peoples-speech', None, 'train-initial', False]
    ]

    output_list = []
    for database_name, ver, table, has_timedeltas in DB:

        a = audb.load(database_name,
                        sampling_rate=16000,
                        format='wav',
                        mixdown=True,
                        version=ver,
                        cache_root='/cache/audb/')
        a = a[table].get()
        if has_timedeltas:
            print(f'{has_timedeltas=}')
            # a = a.reset_index()[['file', 'start', 'end']]
            # output_list += [[*t] for t
            #         in zip(a.file.values, a.start.dt.total_seconds().values, a.end.dt.total_seconds().values)]
        else:
            output_list += [f for f in a.index]  # use file (no timedeltas)
    return output_list





    




    
natural_wav_paths = load_speech()







with open('harvard.json', 'r') as f:
    harvard_individual_sentences = json.load(f)['sentences']



synthetic_wav_paths = ['./enslow/' + i for i in 
                       os.listdir('./enslow/')]
synthetic_wav_paths_4x = ['./style_vector_v2/' + i for i in 
                    os.listdir('./style_vector_v2/')]
synthetic_wav_paths_foreign = ['./mimic3_foreign/' + i for i in os.listdir('./mimic3_foreign/') if 'en_U' not in i]
synthetic_wav_paths_foreign_4x = ['./mimic3_foreign_4x/' + i for i in os.listdir('./mimic3_foreign_4x/') if 'en_U' not in i]  # very short segments

# filter very short styles
synthetic_wav_paths_foreign = [i for i in synthetic_wav_paths_foreign if audiofile.duration(i) > 2]
synthetic_wav_paths_foreign_4x = [i for i in synthetic_wav_paths_foreign_4x if audiofile.duration(i) > 2]
synthetic_wav_paths = [i for i in synthetic_wav_paths if audiofile.duration(i) > 2]
synthetic_wav_pathsn_4x = [i for i in synthetic_wav_paths_4x if audiofile.duration(i) > 2]

shuffle(synthetic_wav_paths_foreign_4x)
shuffle(synthetic_wav_paths_foreign)
shuffle(synthetic_wav_paths)
shuffle(synthetic_wav_paths_4x)
print(len(synthetic_wav_paths_foreign_4x), len(synthetic_wav_paths_foreign),
      len(synthetic_wav_paths), len(synthetic_wav_paths_4x))  # 134 204 134 204



for audio_prompt in ['english', 
                     'english_4x', 
                     'human', 
                     'foreign', 
                     'foreign_4x']:   # each of these creates a separate pkl - so outer for
    #
    data = np.zeros((770, len(LABELS)*2 + 2))  # 768 x LABELS-prompt & LABELS-stts2 & cer-prompt & cer-stts2
    
    
    
    #
    
    OUT_FILE = f'{audio_prompt}_analytic.pkl'
    if not os.path.isfile(OUT_FILE):                    
        ix = 0
        for list_of_10 in harvard_individual_sentences[:10004]:
                # long_sentence = ' '.join(list_of_10['sentences'])
                # harvard.append(long_sentence.replace('.', ' '))
                for text in list_of_10['sentences']:
                    if audio_prompt == 'english':
                        _p = synthetic_wav_paths[ix % len(synthetic_wav_paths)] 
                        #  134
                        style_vec = msinference.compute_style(_p)
                    elif audio_prompt == 'english_4x':
                        _p = synthetic_wav_paths_4x[ix % len(synthetic_wav_paths_4x)]
                        # 134]
                        style_vec = msinference.compute_style(_p)
                    elif audio_prompt == 'human':
                        _p = natural_wav_paths[ix % len(natural_wav_paths)]
                        # ?
                        style_vec = msinference.compute_style(_p)
                    elif audio_prompt == 'foreign':
                        _p = synthetic_wav_paths_foreign[ix % len(synthetic_wav_paths_foreign)]  
                        # 204 some short styles are discarded ~ 1180
                        style_vec = msinference.compute_style(_p)
                    elif audio_prompt == 'foreign_4x':
                        _p = synthetic_wav_paths_foreign_4x[ix % len(synthetic_wav_paths_foreign_4x)]
                        # 174
                        style_vec = msinference.compute_style(_p)
                    else:
                        print('unknonw list of style vector')
                    
                    x = msinference.inference(text,
                                                style_vec,
                                                alpha=0.3,
                                                beta=0.7,
                                                diffusion_steps=7,
                                                embedding_scale=1)
                    x = audresample.resample(x, 24000, 16000)
                    
                    
                    _st, fsr = audiofile.read(_p)
                    _st = audresample.resample(_st, fsr, 16000)
                    print(_st.shape, x.shape)
                    
                    emotion_of_prompt = process_function(_st, 16000, None)
                    emotion_of_out = process_function(x, 16000, None)
                    data[ix, :11] = emotion_of_prompt
                    data[ix, 11:22] = emotion_of_out
                    
                    # 2 last columns is cer-prompt cer-styletts2
                    
                    transcription_prompt = _pipe(_st[0])
                    transcription_styletts2 = _pipe(x[0])  # allow singleton for EMO process func
                    # print(len(emotion_of_prompt + emotion_of_out), ix, text)
                    print(transcription_prompt, transcription_styletts2)
                    
                    data[ix, 22] = jiwer.cer('Sweet dreams are made of this. I travel the world and the seven seas.',
                                       transcription_prompt['text'])
                    
                    data[ix, 23] = jiwer.cer(text, 
                                       transcription_styletts2['text'])
                    print(data[ix, :])
                    
                    ix += 1
                    
        df = pd.DataFrame(data, columns=['prompt-' + i for i in LABELS] + ['styletts2-' + i for i in LABELS] + ['cer-prompt', 'cer-styletts2'])
        df.to_pickle(OUT_FILE)
    else:
        
        df = pd.read_pickle(OUT_FILE)
        print('\nALREADY EXISTS\n{df}')
#  From the pickle we should also run cer and whisper on every prompt