File size: 11,722 Bytes
9b9c715 fda2aa0 9b9c715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# 1. engineer_style_foreign_style_vectors.py # for speed=1 & speed=4
# 2. tts_harvard.py # (call inside SHIFT repo - needs StyleTTS msinference.py)
# 3. visualize_tts_pleasantness.py # figures & audinterface
# Visualises timeseries 11 class for mimic3 human mimic3speed
#
#
# human_770.wav
# mimic3_770.wav
# mimic3_speedup_770.wav
import pandas as pd
import os
import json
import numpy as np
import audonnx
import audb
from pathlib import Path
import transformers
import torch
import audmodel
import audinterface
import matplotlib.pyplot as plt
import audiofile
LABELS = ['arousal', 'dominance', 'valence',
'speech_synthesizer', 'synthetic_singing',
'Angry',
'Sad',
'Happy',
'Surprise',
'Fear',
'Disgust',
'Contempt',
'Neutral'
]
args = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
args.dev = torch.device('cuda:0')
args.dev2 = torch.device('cuda:0')
# def _softmax(x):
# '''x : (batch, num_class)'''
# x -= x.max(1, keepdims=True) # if all -400 then sum(exp(x)) = 0
# x = np.minimum(-100, x)
# x = np.exp(x)
# x /= x.sum(1, keepdims=True)
# return x
def _softmax(x):
'''x : (batch, num_class)'''
x -= x.max(1, keepdims=True) # if all -400 then sum(exp(x)) = 0
x = np.maximum(-100, x)
x = np.exp(x)
x /= x.sum(1, keepdims=True)
return x
def _sigmoid(x):
'''x : (batch, num_class)'''
return 1 / (1 + np.exp(-x))
# --
# ALL = anger, contempt, disgust, fear, happiness, neutral, no_agreement, other, sadness, surprise
# plot - unplesant emo 7x emo-categories [anger, contempt, disgust, fear, sadness] for artifical/sped-up/natural
# plot - pleasant emo [neutral, happiness, surprise]
# plot - Cubes Natural vs spedup 4x speed
# plot - synthesizer class audioset
# https://arxiv.org/pdf/2407.12229
# https://arxiv.org/pdf/2312.05187
# https://arxiv.org/abs/2407.05407
# https://arxiv.org/pdf/2408.06577
# https://arxiv.org/pdf/2309.07405
# wavs are generated concat and plot time-series?
# for mimic3/mimic3speed/human - concat all 77 and run timeseries with 7s hop 3s
for long_audio in [
'mimic3_english_767_5.wav',
'mimic3_english_4x_767_5.wav',
'human_767_5.wav',
'mimic3_foregin_767_5.wav',
'mimic3_foreign_4x_767_5.wav'
]:
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
if not os.path.exists(file_interface):
print('_______________________________________\nProcessing\n', file_interface, '\n___________')
# CAT MSP
from transformers import AutoModelForAudioClassification
import types
def _infer(self, x):
'''x: (batch, audio-samples-16KHz)'''
x = (x + self.config.mean) / self.config.std # plus
x = self.ssl_model(x, attention_mask=None).last_hidden_state
# pool
h = self.pool_model.sap_linear(x).tanh()
w = torch.matmul(h, self.pool_model.attention)
w = stylesoftmax(1)
mu = (x * w).sum(1)
x = torch.cat(
[
mu,
((x * x * w).sum(1) - mu * mu).clamp(min=1e-7).sqrt()
], 1)
return self.ser_model(x)
teacher_cat = AutoModelForAudioClassification.from_pretrained(
'3loi/SER-Odyssey-Baseline-WavLM-Categorical-Attributes',
trust_remote_code=True # fun definitions see 3loi/SER-.. repo
).to(args.dev2).eval()
teacher_cat.forward = types.MethodType(_infer, teacher_cat)
# Audioset & ADV
audioset_model = audonnx.load(audmodel.load('17c240ec-1.0.0'), device='cuda:0')
adv_model = audonnx.load(audmodel.load('90398682-2.0.0'), device='cuda:0')
def process_function(x, sampling_rate, idx):
'''run audioset ct, adv
USE onnx teachers
return [synth-speech, synth-singing, 7x, 3x adv] = 11
'''
# x = x[None , :] ASaHSuFDCN
#{0: 'Angry', 1: 'Sad', 2: 'Happy', 3: 'Surprise',
#4: 'Fear', 5: 'Disgust', 6: 'Contempt', 7: 'Neutral'}
#tensor([[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]])
logits_cat = teacher_cat(torch.from_numpy(x).to(args.dev)).cpu().detach().numpy()
# USE ALL CATEGORIES
# --
logits_audioset = audioset_model(x, 16000)['logits_sounds']
logits_audioset = logits_audioset[:, [7, 35]] # speech synthesizer synthetic singing
# --
logits_adv = adv_model(x, 16000)['logits']
cat = np.concatenate([logits_adv,
_sigmoid(logits_audioset),
_softmax(logits_cat)],
1)
print(cat)
return cat #logits_adv #model(signal, sampling_rate)['logits']
interface = audinterface.Feature(
feature_names=LABELS,
process_func=process_function,
# process_func_args={'outputs': 'logits_scene'},
process_func_applies_sliding_window=False,
win_dur=40.0,
hop_dur=10.0,
sampling_rate=16000,
resample=True,
verbose=True,
)
df_pred = interface.process_file(long_audio)
df_pred.to_pickle(file_interface)
else:
print(file_interface, 'FOUND')
# df_pred = pd.read_pickle(file_interface)
# ===============================================================================
# V I S U A L S by loading all 3 pkl - mimic3 - speedup - human pd
#
# ===============================================================================
preds = {}
SHORTEST_PD = 100000 # segments
for long_audio in [
# 'mimic3.wav',
# 'mimic3_speedup.wav',
'human_770.wav', # 'mimic3_all_77.wav', #
'mimic3_770.wav',
'mimic3_speed_770.wav'
]:
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
y = pd.read_pickle(file_interface)
preds[long_audio] = y
SHORTEST_PD = min(SHORTEST_PD, len(y))
# clean indexes for plot
for k,v in preds.items():
p = v[:SHORTEST_PD] # TRuncate extra segments - human is slower than mimic3
# p = pd.read_pickle(student_file)
p.reset_index(inplace= True)
p.drop(columns=['file','start'], inplace=True)
p.set_index('end', inplace=True)
# p = p.filter(scene_classes) #['transport', 'indoor', 'outdoor'])
p.index = p.index.map(mapper = (lambda x: x.total_seconds()))
preds[k] = p
print(p, '\n\n\n\n \n')
# Show plots by 2
fig, ax = plt.subplots(nrows=10, ncols=2, figsize=(24, 24), gridspec_kw={'hspace': 0, 'wspace': .04})
# ADV
time_stamp = preds['human_770.wav'].index.to_numpy()
for j, dim in enumerate(['arousal',
'dominance',
'valence']):
# MIMIC3
ax[j, 0].plot(time_stamp, preds['mimic3_770.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 0].fill_between(time_stamp,
preds['mimic3_770.wav'][dim],
preds['human_770.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
if j == 0:
ax[j, 0].legend(['StyleTTS2 style mimic3',
'StyleTTS2 style crema-d'],
prop={'size': 10},
# loc='lower right'
)
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=14)
# TICK
ax[j, 0].set_ylim([1e-7, .9999])
# ax[j, 0].set_yticks([.25, .5,.75])
# ax[j, 0].set_yticklabels(['0.25', '.5', '0.75'])
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
# MIMIC3 4x speed
ax[j, 1].plot(time_stamp, preds['mimic3_speed_770.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 1].fill_between(time_stamp,
preds['mimic3_speed_770.wav'][dim],
preds['human_770.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
if j == 0:
ax[j, 1].legend(['StyleTTS2 style mimic3 4x speed',
'StyleTTS2 style crema-d'],
prop={'size': 10},
# loc='lower right'
)
ax[j, 1].set_xlabel('767 Harvard Sentences (seconds)')
# TICK
ax[j, 1].set_ylim([1e-7, .9999])
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
ax[j, 1].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
ax[j, 0].grid()
ax[j, 1].grid()
# CATEGORIE
time_stamp = preds['human_770.wav'].index.to_numpy()
for j, dim in enumerate(['Angry',
'Sad',
'Happy',
'Surprise',
'Fear',
'Disgust',
'Contempt',
# 'Neutral'
]): # ASaHSuFDCN
j = j + 3 # skip A/D/V suplt
# MIMIC3
ax[j, 0].plot(time_stamp, preds['mimic3_770.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 0].fill_between(time_stamp,
preds['mimic3_770.wav'][dim],
preds['human_770.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
# ax[j, 0].legend(['StyleTTS2 style mimic3',
# 'StyleTTS2 style crema-d'],
# prop={'size': 10},
# # loc='upper left'
# )
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=14)
# TICKS
ax[j, 0].set_ylim([1e-7, .9999])
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
ax[j, 0].set_xlabel('767 Harvard Sentences (seconds)', fontsize=16, color=(.4,.4,.4))
# MIMIC3 4x speed
ax[j, 1].plot(time_stamp, preds['mimic3_speed_770.wav'][dim],
color=(0,104/255,139/255),
label='mean_1',
linewidth=2)
ax[j, 1].fill_between(time_stamp,
preds['mimic3_speed_770.wav'][dim],
preds['human_770.wav'][dim],
color=(.2,.2,.2),
alpha=0.244)
# ax[j, 1].legend(['StyleTTS2 style mimic3 4x speed',
# 'StyleTTS2 style crema-d'],
# prop={'size': 10},
# # loc='upper left'
# )
ax[j, 1].set_xlabel('767 Harvard Sentences (seconds)', fontsize=16, color=(.4,.4,.4))
ax[j, 1].set_ylim([1e-7, .999])
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
ax[j, 1].set_xticklabels(['' for _ in ax[j, 1].get_xticklabels()])
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
ax[j, 0].grid()
ax[j, 1].grid()
plt.savefig(f'valence_tts.pdf', bbox_inches='tight')
plt.close()
|