File size: 6,034 Bytes
8a2aca3
08238e0
 
e154110
9b9c715
 
 
 
 
 
8a2aca3
9b9c715
 
 
8a2aca3
 
 
9b9c715
 
fda2aa0
8a2aca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9c715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2aca3
 
 
 
9b9c715
8a2aca3
9b9c715
08238e0
8a2aca3
 
 
9b9c715
 
 
 
08238e0
9b9c715
 
 
 
 
08238e0
 
 
 
 
 
 
 
 
e154110
 
08238e0
 
e154110
 
08238e0
 
e154110
08238e0
 
 
e154110
08238e0
 
e154110
08238e0
 
 
 
 
 
 
 
e154110
08238e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e154110
08238e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Synthesize all Harvard Lists 77x lists of 10x sentences to single .wav

# 1. using mimic3 english 1x/4x non-english 1x/4x
# Call visualize_tts_plesantness.py for 4figs [eng 1x/4x vs human,  non-eng 1x/4x vs human-libri]

import soundfile
import json
import numpy as np
import audb
from pathlib import Path

LABELS = ['arousal', 'dominance', 'valence']




def load_speech(split=None):
    DB = [
        # [dataset, version, table, has_timdeltas_or_is_full_wavfile]
        #    ['crema-d', '1.1.1', 'emotion.voice.test', False],
        ['librispeech', '3.1.0', 'train-clean-360', False],
 #           ['emodb',  '1.2.0', 'emotion.categories.train.gold_standard', False],
  #          ['entertain-playtestcloud', '1.1.0', 'emotion.categories.train.gold_standard', True],
   #         ['erik', '2.2.0', 'emotion.categories.train.gold_standard', True],
    #        ['meld', '1.3.1', 'emotion.categories.train.gold_standard', False],
            # ['msppodcast', '5.0.0', 'emotion.categories.train.gold_standard', False],  # tandalone bucket because it has gt labels?
     #       ['myai', '1.0.1', 'emotion.categories.train.gold_standard', False],
      #      ['casia', None, 'emotion.categories.gold_standard', False],
            # ['switchboard-1', None, 'sentiment', True],
            # ['swiss-parliament', None, 'segments', True], 
            # ['argentinian-parliament', None, 'segments', True],
            # ['austrian-parliament', None, 'segments', True],
            # #'german', --> bundestag
            # ['brazilian-parliament', None, 'segments', True],
            # ['mexican-parliament', None, 'segments', True],
            # ['portuguese-parliament', None, 'segments', True],
       #     ['spanish-parliament', None, 'segments', True],
        #    ['chinese-vocal-emotions-liu-pell', None, 'emotion.categories.desired', False],
            # peoples-speech slow
         #   ['peoples-speech', None, 'train-initial', False]
    ]

    output_list = []
    for database_name, ver, table, has_timedeltas in DB:

        a = audb.load(database_name,
                        sampling_rate=16000,
                        format='wav',
                        mixdown=True,
                        version=ver,
                        cache_root='/cache/audb/')
        a = a[table].get()
        if has_timedeltas:
            print(f'{has_timedeltas=}')
            # a = a.reset_index()[['file', 'start', 'end']]
            # output_list += [[*t] for t
            #         in zip(a.file.values, a.start.dt.total_seconds().values, a.end.dt.total_seconds().values)]
        else:
            output_list += [f for f in a.index]  # use file (no timedeltas)
    return output_list





    




    
natural_wav_paths = load_speech()


# SYNTHESIZE mimic mimicx4 crema-d
import msinference
import os

with open('harvard.json', 'r') as f:
    harvard_individual_sentences = json.load(f)['sentences']


synthetic_wav_paths = ['./style_vector/' + i for i in 
                       os.listdir('./style_vector/')]
synthetic_wav_paths_4x = ['./style_vector_v2/' + i for i in 
                    os.listdir('./style_vector_v2/')]
synthetic_wav_paths_foreign = ['./mimic3_foreign/' + i for i in os.listdir('./mimic3_foreign/')]
synthetic_wav_paths_foreign_4x = ['./mimic3_foreign_4x/' + i for i in os.listdir('./mimic3_foreign_4x/')]



for audio_prompt in ['english', 
                     'english_4x', 
                     'human', 
                     'foreign', 
                     'foreign_4x']:
    if not os.path.isfile(f'{audio_prompt}_z.wav'):
                    total_audio = []
                    ix = 0
                    for list_of_10 in harvard_individual_sentences[:10000]:
                        # long_sentence = ' '.join(list_of_10['sentences'])
                        # harvard.append(long_sentence.replace('.', ' '))
                        for text in list_of_10['sentences']:
                            if audio_prompt == 'english':
                                style_vec = msinference.compute_style(
                                    synthetic_wav_paths[ix % 134])
                            elif audio_prompt == 'english_4x':
                                style_vec = msinference.compute_style(
                                    synthetic_wav_paths_4x[ix % 134])
                            elif audio_prompt == 'human':
                                style_vec = msinference.compute_style(
                                    natural_wav_paths[ix % len(natural_wav_paths)])
                            elif audio_prompt == 'foreign':
                                style_vec = msinference.compute_style(
                                    synthetic_wav_paths_foreign[ix % 204])
                            elif audio_prompt == 'foreign_4x':
                                style_vec = msinference.compute_style(
                                    synthetic_wav_paths_foreign_4x[ix % 204])
                            else:
                                print('unknonw list of style vecto')
                            print(ix, text)
                            ix += 1
                            x = msinference.inference(text,
                                                        style_vec,
                                                        alpha=0.3,
                                                        beta=0.7,
                                                        diffusion_steps=7,
                                                        embedding_scale=1)
                            
                            total_audio.append(x)
                            # concat before write
                        # -- for 10x sentenctes
                        print('_____________________')
                    # -- for 77x lists
                    total_audio = np.concatenate(total_audio)    
                    soundfile.write(f'{audio_prompt}_z.wav', total_audio, 24000)
                    
    else:
        print('\nALREADY EXISTS\n')