|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from .utils import init_weights, get_padding |
|
|
|
import math |
|
import random |
|
import numpy as np |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
class AdaIN1d(nn.Module): |
|
def __init__(self, style_dim, num_features): |
|
super().__init__() |
|
self.norm = nn.InstanceNorm1d(num_features, affine=False) |
|
self.fc = nn.Linear(style_dim, num_features*2) |
|
|
|
def forward(self, x, s): |
|
h = self.fc(s) |
|
h = h.view(h.size(0), h.size(1), 1) |
|
gamma, beta = torch.chunk(h, chunks=2, dim=1) |
|
return (1 + gamma) * self.norm(x) + beta |
|
|
|
class AdaINResBlock1(torch.nn.Module): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64): |
|
super(AdaINResBlock1, self).__init__() |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
self.adain1 = nn.ModuleList([ |
|
AdaIN1d(style_dim, channels), |
|
AdaIN1d(style_dim, channels), |
|
AdaIN1d(style_dim, channels), |
|
]) |
|
|
|
self.adain2 = nn.ModuleList([ |
|
AdaIN1d(style_dim, channels), |
|
AdaIN1d(style_dim, channels), |
|
AdaIN1d(style_dim, channels), |
|
]) |
|
|
|
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))]) |
|
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))]) |
|
|
|
|
|
def forward(self, x, s): |
|
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2): |
|
xt = n1(x, s) |
|
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) |
|
xt = c1(xt) |
|
xt = n2(xt, s) |
|
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
class SineGen(torch.nn.Module): |
|
""" Definition of sine generator |
|
SineGen(samp_rate, harmonic_num = 0, |
|
sine_amp = 0.1, noise_std = 0.003, |
|
voiced_threshold = 0, |
|
flag_for_pulse=False) |
|
samp_rate: sampling rate in Hz |
|
harmonic_num: number of harmonic overtones (default 0) |
|
sine_amp: amplitude of sine-wavefrom (default 0.1) |
|
noise_std: std of Gaussian noise (default 0.003) |
|
voiced_thoreshold: F0 threshold for U/V classification (default 0) |
|
flag_for_pulse: this SinGen is used inside PulseGen (default False) |
|
Note: when flag_for_pulse is True, the first time step of a voiced |
|
segment is always sin(np.pi) or cos(0) |
|
""" |
|
|
|
def __init__(self, samp_rate, upsample_scale, harmonic_num=0, |
|
sine_amp=0.1, noise_std=0.003, |
|
voiced_threshold=0, |
|
flag_for_pulse=False): |
|
super(SineGen, self).__init__() |
|
self.sine_amp = sine_amp |
|
self.noise_std = noise_std |
|
self.harmonic_num = harmonic_num |
|
self.dim = self.harmonic_num + 1 |
|
self.sampling_rate = samp_rate |
|
self.voiced_threshold = voiced_threshold |
|
self.flag_for_pulse = flag_for_pulse |
|
self.upsample_scale = upsample_scale |
|
|
|
def _f02uv(self, f0): |
|
|
|
uv = (f0 > self.voiced_threshold).type(torch.float32) |
|
return uv |
|
|
|
def _f02sine(self, f0_values): |
|
""" f0_values: (batchsize, length, dim) |
|
where dim indicates fundamental tone and overtones |
|
""" |
|
|
|
|
|
rad_values = (f0_values / self.sampling_rate) % 1 |
|
|
|
|
|
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ |
|
device=f0_values.device) |
|
rand_ini[:, 0] = 0 |
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini |
|
|
|
|
|
if not self.flag_for_pulse: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), |
|
scale_factor=1/self.upsample_scale, |
|
mode="linear").transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi |
|
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale, |
|
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2) |
|
sines = torch.sin(phase) |
|
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
uv = self._f02uv(f0_values) |
|
uv_1 = torch.roll(uv, shifts=-1, dims=1) |
|
uv_1[:, -1, :] = 1 |
|
u_loc = (uv < 1) * (uv_1 > 0) |
|
|
|
|
|
tmp_cumsum = torch.cumsum(rad_values, dim=1) |
|
|
|
for idx in range(f0_values.shape[0]): |
|
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] |
|
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] |
|
|
|
|
|
tmp_cumsum[idx, :, :] = 0 |
|
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum |
|
|
|
|
|
|
|
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) |
|
|
|
|
|
sines = torch.cos(i_phase * 2 * np.pi) |
|
return sines |
|
|
|
def forward(self, f0): |
|
""" sine_tensor, uv = forward(f0) |
|
input F0: tensor(batchsize=1, length, dim=1) |
|
f0 for unvoiced steps should be 0 |
|
output sine_tensor: tensor(batchsize=1, length, dim) |
|
output uv: tensor(batchsize=1, length, 1) |
|
""" |
|
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, |
|
device=f0.device) |
|
|
|
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) |
|
|
|
|
|
sine_waves = self._f02sine(fn) * self.sine_amp |
|
|
|
|
|
|
|
|
|
uv = self._f02uv(f0) |
|
|
|
|
|
|
|
|
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 |
|
noise = noise_amp * torch.randn_like(sine_waves) |
|
|
|
|
|
|
|
sine_waves = sine_waves * uv + noise |
|
return sine_waves, uv, noise |
|
|
|
|
|
class SourceModuleHnNSF(torch.nn.Module): |
|
""" SourceModule for hn-nsf |
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0) |
|
sampling_rate: sampling_rate in Hz |
|
harmonic_num: number of harmonic above F0 (default: 0) |
|
sine_amp: amplitude of sine source signal (default: 0.1) |
|
add_noise_std: std of additive Gaussian noise (default: 0.003) |
|
note that amplitude of noise in unvoiced is decided |
|
by sine_amp |
|
voiced_threshold: threhold to set U/V given F0 (default: 0) |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
uv (batchsize, length, 1) |
|
""" |
|
|
|
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
|
|
|
|
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num, |
|
sine_amp, add_noise_std, voiced_threshod) |
|
|
|
|
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x): |
|
""" |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
""" |
|
|
|
with torch.no_grad(): |
|
sine_wavs, uv, _ = self.l_sin_gen(x) |
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) |
|
|
|
|
|
noise = torch.randn_like(uv) * self.sine_amp / 3 |
|
return sine_merge, noise, uv |
|
def padDiff(x): |
|
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0) |
|
|
|
class Generator(torch.nn.Module): |
|
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes): |
|
super(Generator, self).__init__() |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
resblock = AdaINResBlock1 |
|
|
|
self.m_source = SourceModuleHnNSF( |
|
sampling_rate=24000, |
|
upsample_scale=np.prod(upsample_rates), |
|
harmonic_num=8, voiced_threshod=10) |
|
|
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) |
|
self.noise_convs = nn.ModuleList() |
|
self.ups = nn.ModuleList() |
|
self.noise_res = nn.ModuleList() |
|
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
c_cur = upsample_initial_channel // (2 ** (i + 1)) |
|
|
|
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i), |
|
upsample_initial_channel//(2**(i+1)), |
|
k, u, padding=(u//2 + u%2), output_padding=u%2))) |
|
|
|
if i + 1 < len(upsample_rates): |
|
stride_f0 = np.prod(upsample_rates[i + 1:]) |
|
self.noise_convs.append(Conv1d( |
|
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2)) |
|
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim)) |
|
else: |
|
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) |
|
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim)) |
|
|
|
self.resblocks = nn.ModuleList() |
|
|
|
self.alphas = nn.ParameterList() |
|
self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1))) |
|
|
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel//(2**(i+1)) |
|
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1))) |
|
|
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(ch, k, d, style_dim)) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x, s, f0): |
|
|
|
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) |
|
|
|
har_source, noi_source, uv = self.m_source(f0) |
|
har_source = har_source.transpose(1, 2) |
|
|
|
for i in range(self.num_upsamples): |
|
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2) |
|
x_source = self.noise_convs[i](har_source) |
|
x_source = self.noise_res[i](x_source, s) |
|
|
|
x = self.ups[i](x) |
|
x = x + x_source |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i*self.num_kernels+j](x, s) |
|
else: |
|
xs += self.resblocks[i*self.num_kernels+j](x, s) |
|
x = xs / self.num_kernels |
|
x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
|
|
class AdainResBlk1d(nn.Module): |
|
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), |
|
upsample='none', dropout_p=0.0): |
|
super().__init__() |
|
self.actv = actv |
|
self.upsample_type = upsample |
|
self.upsample = UpSample1d(upsample) |
|
self.learned_sc = dim_in != dim_out |
|
self._build_weights(dim_in, dim_out, style_dim) |
|
self.dropout = nn.Dropout(dropout_p) |
|
|
|
if upsample == 'none': |
|
self.pool = nn.Identity() |
|
else: |
|
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) |
|
|
|
|
|
def _build_weights(self, dim_in, dim_out, style_dim): |
|
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) |
|
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) |
|
self.norm1 = AdaIN1d(style_dim, dim_in) |
|
self.norm2 = AdaIN1d(style_dim, dim_out) |
|
if self.learned_sc: |
|
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) |
|
|
|
def _shortcut(self, x): |
|
x = self.upsample(x) |
|
if self.learned_sc: |
|
x = self.conv1x1(x) |
|
return x |
|
|
|
def _residual(self, x, s): |
|
x = self.norm1(x, s) |
|
x = self.actv(x) |
|
x = self.pool(x) |
|
x = self.conv1(self.dropout(x)) |
|
x = self.norm2(x, s) |
|
x = self.actv(x) |
|
x = self.conv2(self.dropout(x)) |
|
return x |
|
|
|
def forward(self, x, s): |
|
out = self._residual(x, s) |
|
out = (out + self._shortcut(x)) / math.sqrt(2) |
|
return out |
|
|
|
class UpSample1d(nn.Module): |
|
def __init__(self, layer_type): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
def forward(self, x): |
|
if self.layer_type == 'none': |
|
return x |
|
else: |
|
return F.interpolate(x, scale_factor=2, mode='nearest') |
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80, |
|
resblock_kernel_sizes = [3,7,11], |
|
upsample_rates = [10,5,3,2], |
|
upsample_initial_channel=512, |
|
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]], |
|
upsample_kernel_sizes=[20,10,6,4]): |
|
super().__init__() |
|
|
|
self.decode = nn.ModuleList() |
|
|
|
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim) |
|
|
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) |
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) |
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) |
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True)) |
|
|
|
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) |
|
|
|
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) |
|
|
|
self.asr_res = nn.Sequential( |
|
weight_norm(nn.Conv1d(512, 64, kernel_size=1)), |
|
) |
|
|
|
|
|
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes) |
|
|
|
|
|
def forward(self, asr, F0_curve, N, s): |
|
if self.training: |
|
downlist = [0, 3, 7] |
|
F0_down = downlist[random.randint(0, 2)] |
|
downlist = [0, 3, 7, 15] |
|
N_down = downlist[random.randint(0, 3)] |
|
if F0_down: |
|
F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down |
|
if N_down: |
|
N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down |
|
|
|
|
|
F0 = self.F0_conv(F0_curve.unsqueeze(1)) |
|
N = self.N_conv(N.unsqueeze(1)) |
|
|
|
x = torch.cat([asr, F0, N], axis=1) |
|
x = self.encode(x, s) |
|
|
|
asr_res = self.asr_res(asr) |
|
|
|
res = True |
|
for block in self.decode: |
|
if res: |
|
x = torch.cat([x, asr_res, F0, N], axis=1) |
|
x = block(x, s) |
|
if block.upsample_type != "none": |
|
res = False |
|
|
|
x = self.generator(x, s, F0_curve) |
|
return x |
|
|
|
|