|
from math import pi |
|
from random import randint |
|
from typing import Any, Optional, Sequence, Tuple, Union |
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import Tensor, nn |
|
from tqdm import tqdm |
|
|
|
from .utils import * |
|
from .sampler import * |
|
|
|
""" |
|
Diffusion Classes (generic for 1d data) |
|
""" |
|
|
|
|
|
class Model1d(nn.Module): |
|
def __init__(self, unet_type: str = "base", **kwargs): |
|
super().__init__() |
|
diffusion_kwargs, kwargs = groupby("diffusion_", kwargs) |
|
self.unet = None |
|
self.diffusion = None |
|
|
|
def forward(self, x: Tensor, **kwargs) -> Tensor: |
|
return self.diffusion(x, **kwargs) |
|
|
|
def sample(self, *args, **kwargs) -> Tensor: |
|
return self.diffusion.sample(*args, **kwargs) |
|
|
|
|
|
""" |
|
Audio Diffusion Classes (specific for 1d audio data) |
|
""" |
|
|
|
|
|
def get_default_model_kwargs(): |
|
return dict( |
|
channels=128, |
|
patch_size=16, |
|
multipliers=[1, 2, 4, 4, 4, 4, 4], |
|
factors=[4, 4, 4, 2, 2, 2], |
|
num_blocks=[2, 2, 2, 2, 2, 2], |
|
attentions=[0, 0, 0, 1, 1, 1, 1], |
|
attention_heads=8, |
|
attention_features=64, |
|
attention_multiplier=2, |
|
attention_use_rel_pos=False, |
|
diffusion_type="v", |
|
diffusion_sigma_distribution=UniformDistribution(), |
|
) |
|
|
|
|
|
def get_default_sampling_kwargs(): |
|
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True) |
|
|
|
|
|
class AudioDiffusionModel(Model1d): |
|
def __init__(self, **kwargs): |
|
super().__init__(**{**get_default_model_kwargs(), **kwargs}) |
|
|
|
def sample(self, *args, **kwargs): |
|
return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs}) |
|
|
|
|
|
class AudioDiffusionConditional(Model1d): |
|
def __init__( |
|
self, |
|
embedding_features: int, |
|
embedding_max_length: int, |
|
embedding_mask_proba: float = 0.1, |
|
**kwargs, |
|
): |
|
self.embedding_mask_proba = embedding_mask_proba |
|
default_kwargs = dict( |
|
**get_default_model_kwargs(), |
|
unet_type="cfg", |
|
context_embedding_features=embedding_features, |
|
context_embedding_max_length=embedding_max_length, |
|
) |
|
super().__init__(**{**default_kwargs, **kwargs}) |
|
|
|
def forward(self, *args, **kwargs): |
|
default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba) |
|
return super().forward(*args, **{**default_kwargs, **kwargs}) |
|
|
|
def sample(self, *args, **kwargs): |
|
default_kwargs = dict( |
|
**get_default_sampling_kwargs(), |
|
embedding_scale=5.0, |
|
) |
|
return super().sample(*args, **{**default_kwargs, **kwargs}) |
|
|
|
|
|
|