light files
Browse files- mimic3_make_harvard_sentences.py +205 -137
- models.py +611 -0
- text_utils.py +116 -0
- utils.py +74 -0
mimic3_make_harvard_sentences.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import shutil
|
2 |
import csv
|
3 |
import io
|
@@ -62,12 +63,12 @@ import audiofile
|
|
62 |
# [print(i) for i in foreign_voices]
|
63 |
# print('\n_______________________________\n')
|
64 |
# [print(i) for i in english_voices]
|
65 |
-
# ======================================================
|
66 |
list_voices = [
|
67 |
'en_US/m-ailabs_low#mary_ann',
|
68 |
'en_UK/apope_low',
|
69 |
'de_DE/thorsten-emotion_low#neutral', # is the 4x really interesting we can just write it in Section
|
70 |
-
'human'
|
71 |
] # special - for human we load specific style file - no Mimic3 is run
|
72 |
|
73 |
|
@@ -290,7 +291,7 @@ for _id, _voice in enumerate(list_voices):
|
|
290 |
with open('harvard.json', 'r') as f:
|
291 |
harvard_individual_sentences = json.load(f)['sentences']
|
292 |
total_audio_mimic3 = []
|
293 |
-
|
294 |
ix = 0
|
295 |
for list_of_10 in harvard_individual_sentences[:1]: # 77
|
296 |
|
@@ -341,16 +342,22 @@ for _id, _voice in enumerate(list_voices):
|
|
341 |
# # state.ssml = 1234546575
|
342 |
# state.stdout = True
|
343 |
# state.tts = True
|
344 |
-
|
|
|
345 |
shutdown_tts(state)
|
346 |
-
x, fs = audiofile.read(
|
347 |
-
print(x.shape)
|
348 |
else:
|
|
|
349 |
# MSP['valence.train.votes'].get().sort_values('7').index[-1]
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
352 |
print(x.shape,' human') # crop human to almost mimic-3 duration
|
353 |
total_audio_mimic3.append(x)
|
|
|
354 |
print(fs, text, 'mimic3')
|
355 |
|
356 |
# MIMIC3 = = = = = = = = = = = = = = END
|
@@ -358,7 +365,7 @@ for _id, _voice in enumerate(list_voices):
|
|
358 |
|
359 |
|
360 |
|
361 |
-
style_vec = msinference.compute_style(
|
362 |
|
363 |
|
364 |
|
@@ -369,39 +376,47 @@ for _id, _voice in enumerate(list_voices):
|
|
369 |
diffusion_steps=7,
|
370 |
embedding_scale=1)
|
371 |
|
372 |
-
|
|
|
|
|
373 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
total_audio_stts2 = np.concatenate(total_audio_stts2) # -- concat 77x lists
|
380 |
-
total_audio_stts2 = audresample.resample(total_audio_stts2, original_rate=24000, target_rate=16000)[0] # for audinterface
|
381 |
-
audiofile.write(out_dir + 'styletts2__' + _str + '.wav', total_audio_stts2, 16000)
|
382 |
|
383 |
total_audio_mimic3 = np.concatenate(total_audio_mimic3) # -- concat 77x lists
|
384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
audiofile.write(out_dir + 'mimic3__' + _str + '.wav', total_audio_mimic3, 16000)
|
386 |
|
387 |
-
print(
|
388 |
-
|
389 |
-
print('Skip:', out_dir + 'styletts2__' + _str + '.wav')
|
390 |
|
391 |
|
392 |
# AUD I N T E R F A C E
|
393 |
-
|
394 |
|
395 |
|
396 |
|
397 |
-
for engine in ['mimic3',
|
|
|
398 |
harvard_of_voice = f'{out_dir}{engine}__{_str}'
|
399 |
if not os.path.exists(harvard_of_voice + '.pkl'):
|
400 |
df = interface.process_file(harvard_of_voice + '.wav')
|
401 |
df.to_pickle(harvard_of_voice + '.pkl')
|
402 |
-
|
403 |
-
|
404 |
-
print(harvard_of_voice + '.pkl', 'FOUND')
|
405 |
|
406 |
|
407 |
|
@@ -411,150 +426,203 @@ for _id, _voice in enumerate(list_voices):
|
|
411 |
|
412 |
|
413 |
|
414 |
-
|
415 |
print('\nVisuals\n')
|
416 |
|
417 |
# ===============================================================================
|
418 |
# V I S U A L S
|
419 |
#
|
420 |
# ===============================================================================
|
|
|
|
|
|
|
|
|
421 |
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
for engine in ['mimic3', 'styletts2']:
|
437 |
-
harvard_of_voice = f'{_dir}{engine}__{_str}'
|
438 |
-
if not os.path.exists(harvard_of_voice + '.pkl'):
|
439 |
-
df = interface.process_file(harvard_of_voice + '.wav')
|
440 |
-
df.to_pickle(harvard_of_voice + '.pkl')
|
441 |
-
else:
|
442 |
-
df = pd.read_pickle(harvard_of_voice + '.pkl')
|
443 |
-
print(harvard_of_voice + '.pkl', 'FOUND')
|
444 |
|
445 |
-
vis_df[engine] = df
|
446 |
-
SHORT = min(len(vis_df['mimic3']), len(vis_df['styletts2']))
|
447 |
-
for k,v in vis_df.items():
|
448 |
-
p = v[:SHORT] # TRuncate extra segments - human is slower than mimic3
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
|
|
460 |
|
461 |
|
|
|
462 |
|
463 |
-
fig, ax = plt.subplots(nrows=10, ncols=2, figsize=(24, 24),
|
464 |
-
gridspec_kw={'hspace': 0, 'wspace': .04})
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
|
|
|
|
|
469 |
|
470 |
-
|
471 |
-
|
472 |
-
'dominance',
|
473 |
-
'valence']):
|
474 |
-
|
475 |
-
# MIMIC3
|
476 |
-
|
477 |
-
ax[j, 0].plot(time_stamp, vis_df['mimic3'][dim],
|
478 |
-
color=(0,104/255,139/255),
|
479 |
-
label='mean_1',
|
480 |
-
linewidth=2)
|
481 |
-
ax[j, 0].fill_between(time_stamp,
|
482 |
-
|
483 |
-
vis_df['mimic3'][dim],
|
484 |
-
vis_df['styletts2'][dim],
|
485 |
-
|
486 |
-
color=(.2,.2,.2),
|
487 |
-
alpha=0.244)
|
488 |
-
if j == 0:
|
489 |
-
ax[j, 0].legend(['StyleTTS2 style mimic3',
|
490 |
-
'StyleTTS2 style crema-d'],
|
491 |
-
prop={'size': 10},
|
492 |
-
# loc='lower right'
|
493 |
-
)
|
494 |
-
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=14)
|
495 |
-
|
496 |
-
# TICK
|
497 |
-
ax[j, 0].set_ylim([1e-7, .9999])
|
498 |
-
# ax[j, 0].set_yticks([.25, .5,.75])
|
499 |
-
# ax[j, 0].set_yticklabels(['0.25', '.5', '0.75'])
|
500 |
-
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
501 |
-
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
|
504 |
-
|
505 |
-
|
506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
|
508 |
|
509 |
|
510 |
|
511 |
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
|
524 |
-
|
525 |
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
|
532 |
-
|
533 |
-
|
534 |
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
|
543 |
|
544 |
-
|
545 |
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
|
552 |
|
553 |
-
|
554 |
|
555 |
|
|
|
|
|
|
|
|
|
|
|
556 |
|
557 |
-
|
558 |
-
|
559 |
|
560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/audeering/shift/tree/main -- RUN FROM THIS REPO
|
2 |
import shutil
|
3 |
import csv
|
4 |
import io
|
|
|
63 |
# [print(i) for i in foreign_voices]
|
64 |
# print('\n_______________________________\n')
|
65 |
# [print(i) for i in english_voices]
|
66 |
+
# ====================================================== LIST Mimic-3 ALL VOICES
|
67 |
list_voices = [
|
68 |
'en_US/m-ailabs_low#mary_ann',
|
69 |
'en_UK/apope_low',
|
70 |
'de_DE/thorsten-emotion_low#neutral', # is the 4x really interesting we can just write it in Section
|
71 |
+
'human',
|
72 |
] # special - for human we load specific style file - no Mimic3 is run
|
73 |
|
74 |
|
|
|
291 |
with open('harvard.json', 'r') as f:
|
292 |
harvard_individual_sentences = json.load(f)['sentences']
|
293 |
total_audio_mimic3 = []
|
294 |
+
total_audio_styletts2 = []
|
295 |
ix = 0
|
296 |
for list_of_10 in harvard_individual_sentences[:1]: # 77
|
297 |
|
|
|
342 |
# # state.ssml = 1234546575
|
343 |
# state.stdout = True
|
344 |
# state.tts = True
|
345 |
+
style_path = 'tmp1.wav'
|
346 |
+
process_lines(state, wav_path=style_path)
|
347 |
shutdown_tts(state)
|
348 |
+
x, fs = audiofile.read(style_path)
|
349 |
+
# print(x.shape)
|
350 |
else:
|
351 |
+
# --
|
352 |
# MSP['valence.train.votes'].get().sort_values('7').index[-1]
|
353 |
+
# style_path = '/cache/audb/msppodcast/2.4.0/fe182b91/Audios/MSP-PODCAST_0235_0053.wav'
|
354 |
+
# --
|
355 |
+
# MSP['emotion.test-1'].get().sort_values('valence').index[-1]
|
356 |
+
style_path = '/cache/audb/msppodcast/2.4.0/fe182b91/Audios/MSP-PODCAST_0220_0870.wav'
|
357 |
+
x, fs = audiofile.read(style_path) # assure is not very short - equl harvard sent len
|
358 |
print(x.shape,' human') # crop human to almost mimic-3 duration
|
359 |
total_audio_mimic3.append(x)
|
360 |
+
print(f'{len(total_audio_mimic3)=}')
|
361 |
print(fs, text, 'mimic3')
|
362 |
|
363 |
# MIMIC3 = = = = = = = = = = = = = = END
|
|
|
365 |
|
366 |
|
367 |
|
368 |
+
style_vec = msinference.compute_style(style_path) # use mimic-3 as prompt
|
369 |
|
370 |
|
371 |
|
|
|
376 |
diffusion_steps=7,
|
377 |
embedding_scale=1)
|
378 |
|
379 |
+
total_audio_styletts2.append(x)
|
380 |
+
|
381 |
+
# save styletts2 .wav
|
382 |
|
383 |
+
total_audio_styletts2 = np.concatenate(total_audio_styletts2) # -- concat 77x lists
|
384 |
+
total_audio_styletts2 = audresample.resample(total_audio_styletts2,
|
385 |
+
original_rate=24000,
|
386 |
+
target_rate=16000)[0]
|
387 |
+
print('RESAMPLEstyletts2', total_audio_styletts2.shape)
|
388 |
+
audiofile.write(out_dir + 'styletts2__' + _str + '.wav', total_audio_styletts2, 16000)
|
389 |
+
# print('Saving:', out_dir + 'styletts2__' + _str + '.wav')
|
390 |
|
391 |
+
# save mimic3 or human .wav
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
total_audio_mimic3 = np.concatenate(total_audio_mimic3) # -- concat 77x lists
|
394 |
+
if 'human' not in _str:
|
395 |
+
total_audio_mimic3 = audresample.resample(total_audio_mimic3,
|
396 |
+
original_rate=24000,
|
397 |
+
target_rate=16000)[0]
|
398 |
+
else:
|
399 |
+
print('human is already on 16kHz - MSPpodcst file')
|
400 |
+
print('RESAMPLEmimic3', total_audio_mimic3.shape)
|
401 |
audiofile.write(out_dir + 'mimic3__' + _str + '.wav', total_audio_mimic3, 16000)
|
402 |
|
403 |
+
print(total_audio_mimic3.shape, total_audio_styletts2.shape, 'LEN OF TOTAL\n')
|
404 |
+
# print('Saving:', out_dir + 'mimic3__' + _str + '.wav')
|
|
|
405 |
|
406 |
|
407 |
# AUD I N T E R F A C E
|
408 |
+
|
409 |
|
410 |
|
411 |
|
412 |
+
for engine in ['mimic3',
|
413 |
+
'styletts2']:
|
414 |
harvard_of_voice = f'{out_dir}{engine}__{_str}'
|
415 |
if not os.path.exists(harvard_of_voice + '.pkl'):
|
416 |
df = interface.process_file(harvard_of_voice + '.wav')
|
417 |
df.to_pickle(harvard_of_voice + '.pkl')
|
418 |
+
print('\n\n', harvard_of_voice, df,'\n___________________________\n')
|
419 |
+
|
|
|
420 |
|
421 |
|
422 |
|
|
|
426 |
|
427 |
|
428 |
|
429 |
+
raise SystemExit
|
430 |
print('\nVisuals\n')
|
431 |
|
432 |
# ===============================================================================
|
433 |
# V I S U A L S
|
434 |
#
|
435 |
# ===============================================================================
|
436 |
+
voice_pairs = [
|
437 |
+
[list_voices[0], list_voices[1]],
|
438 |
+
[list_voices[2], list_voices[3]]
|
439 |
+
] # special - for human we load specific style file - no Mimic3 is run
|
440 |
|
441 |
+
# PLot 1 list_voices[0] list_voices[1]
|
442 |
+
# Plot 2 list_voices[2] list_voices[2]
|
443 |
+
|
444 |
+
for vox1, vox2 in voice_pairs: # 1 figure pro pair
|
445 |
+
|
446 |
+
_str1 = vox1.replace('/', '_').replace('#', '_').replace('_low', '')
|
447 |
+
|
448 |
+
if 'cmu-arctic' in _str1:
|
449 |
+
_str1 = _str1.replace('cmu-arctic', 'cmu_arctic') #+ '.wav'
|
450 |
+
|
451 |
+
_str2 = vox2.replace('/', '_').replace('#', '_').replace('_low', '')
|
452 |
+
|
453 |
+
if 'cmu-arctic' in _str2:
|
454 |
+
_str2 = _str2.replace('cmu-arctic', 'cmu_arctic') #+ '.wav'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
|
|
|
|
|
|
|
|
456 |
|
457 |
+
vis_df = {
|
458 |
+
f'mimic3_{_str1}' : pd.read_pickle(out_dir + 'mimic3__' + _str1 + '.pkl'),
|
459 |
+
f'mimic3_{_str2}' : pd.read_pickle(out_dir + 'mimic3__' + _str2 + '.pkl'),
|
460 |
+
f'styletts2_{_str1}' : pd.read_pickle(out_dir + 'styletts2__' + _str1 + '.pkl'),
|
461 |
+
f'styletts2_{_str2}' : pd.read_pickle(out_dir + 'styletts2__' + _str2 + '.pkl'),
|
462 |
+
}
|
463 |
+
|
464 |
|
465 |
+
|
466 |
+
|
467 |
+
SHORT_LEN = min([len(v) for k, v in vis_df.items()]) # different TTS durations per voic
|
468 |
+
for k,v in vis_df.items():
|
469 |
+
p = v[:SHORT_LEN] # TRuncate extra segments - human is slower than mimic3
|
470 |
+
print('\n\n\n\n',k, p)
|
471 |
+
p.reset_index(inplace= True)
|
472 |
+
p.drop(columns=['file','start'], inplace=True)
|
473 |
+
p.set_index('end', inplace=True)
|
474 |
+
# p = p.filter(scene_classes) #['transport', 'indoor', 'outdoor'])
|
475 |
+
p.index = p.index.map(mapper = (lambda x: x.total_seconds()))
|
476 |
+
vis_df[k] = p
|
477 |
+
preds = vis_df
|
478 |
+
fig, ax = plt.subplots(nrows=10, ncols=2, figsize=(24, 24), gridspec_kw={'hspace': 0, 'wspace': .04})
|
479 |
+
|
480 |
+
|
481 |
+
# ADV - subplots
|
482 |
+
|
483 |
+
time_stamp = preds[f'mimic3_{_str2}'].index.to_numpy()
|
484 |
+
for j, dim in enumerate(['arousal',
|
485 |
+
'dominance',
|
486 |
+
'valence']):
|
487 |
+
|
488 |
+
# MIMIC3
|
489 |
+
|
490 |
+
ax[j, 0].plot(time_stamp, preds[f'styletts2_{_str1}'][dim],
|
491 |
+
color=(0,104/255,139/255),
|
492 |
+
label='mean_1',
|
493 |
+
linewidth=2)
|
494 |
+
ax[j, 0].fill_between(time_stamp,
|
495 |
+
|
496 |
+
preds[f'styletts2_{_str1}'][dim],
|
497 |
+
preds[f'mimic3_{_str1}'][dim],
|
498 |
+
|
499 |
+
color=(.2,.2,.2),
|
500 |
+
alpha=0.244)
|
501 |
+
if j == 0:
|
502 |
+
ax[j, 0].legend([f'mimic3_{_str1}',
|
503 |
+
f'StyleTTS2 using {_str1}'],
|
504 |
+
prop={'size': 10},
|
505 |
+
# loc='lower right'
|
506 |
+
)
|
507 |
+
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=14)
|
508 |
|
509 |
+
# TICK
|
510 |
+
ax[j, 0].set_ylim([1e-7, .9999])
|
511 |
+
# ax[j, 0].set_yticks([.25, .5,.75])
|
512 |
+
# ax[j, 0].set_yticklabels(['0.25', '.5', '0.75'])
|
513 |
+
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
514 |
+
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
515 |
|
516 |
|
517 |
+
# MIMIC3 4x speed
|
518 |
|
|
|
|
|
519 |
|
520 |
+
ax[j, 1].plot(time_stamp, preds[f'mimic3_{_str2}'][dim],
|
521 |
+
color=(0,104/255,139/255),
|
522 |
+
label='mean_1',
|
523 |
+
linewidth=2)
|
524 |
+
ax[j, 1].fill_between(time_stamp,
|
525 |
|
526 |
+
preds[f'styletts2_{_str2}'][dim],
|
527 |
+
preds[f'mimic3_{_str2}'][dim],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
+
color=(.2,.2,.2),
|
530 |
+
alpha=0.244)
|
531 |
+
if j == 0:
|
532 |
+
ax[j, 1].legend([f'mimic3_{_str2}',
|
533 |
+
f'StyleTTS2 using {_str2}'],
|
534 |
+
prop={'size': 10},
|
535 |
+
# loc='lower right'
|
536 |
+
)
|
537 |
|
538 |
+
|
539 |
+
ax[j, 1].set_xlabel('767 Harvard Sentences (seconds)')
|
540 |
+
|
541 |
+
|
542 |
+
|
543 |
+
# TICK
|
544 |
+
ax[j, 1].set_ylim([1e-7, .9999])
|
545 |
+
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
546 |
+
ax[j, 1].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
547 |
+
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
548 |
+
|
549 |
+
|
550 |
+
|
551 |
+
|
552 |
+
ax[j, 0].grid()
|
553 |
+
ax[j, 1].grid()
|
554 |
+
# CATEGORIE
|
555 |
|
556 |
|
557 |
|
558 |
|
559 |
|
560 |
+
time_stamp = preds[f'mimic3_{_str1}'].index.to_numpy()
|
561 |
+
for j, dim in enumerate(['Angry',
|
562 |
+
'Sad',
|
563 |
+
'Happy',
|
564 |
+
'Surprise',
|
565 |
+
'Fear',
|
566 |
+
'Disgust',
|
567 |
+
'Contempt',
|
568 |
+
# 'Neutral'
|
569 |
+
]): # ASaHSuFDCN
|
570 |
+
j = j + 3 # skip A/D/V suplt
|
571 |
|
572 |
+
# MIMIC3
|
573 |
|
574 |
+
ax[j, 0].plot(time_stamp, preds[f'mimic3_{_str1}'][dim],
|
575 |
+
color=(0,104/255,139/255),
|
576 |
+
label='mean_1',
|
577 |
+
linewidth=2)
|
578 |
+
ax[j, 0].fill_between(time_stamp,
|
579 |
|
580 |
+
preds[f'mimic3_{_str2}'][dim],
|
581 |
+
preds[f'styletts2_{_str2}'][dim],
|
582 |
|
583 |
+
color=(.2,.2,.2),
|
584 |
+
alpha=0.244)
|
585 |
+
# ax[j, 0].legend(['StyleTTS2 style mimic3',
|
586 |
+
# 'StyleTTS2 style crema-d'],
|
587 |
+
# prop={'size': 10},
|
588 |
+
# # loc='upper left'
|
589 |
+
# )
|
590 |
|
591 |
|
592 |
+
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=14)
|
593 |
|
594 |
+
# TICKS
|
595 |
+
ax[j, 0].set_ylim([1e-7, .9999])
|
596 |
+
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
597 |
+
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
598 |
+
ax[j, 0].set_xlabel('767 Harvard Sentences (seconds)', fontsize=16, color=(.4,.4,.4))
|
599 |
|
600 |
|
601 |
+
# MIMIC3 4x speed
|
602 |
|
603 |
|
604 |
+
ax[j, 1].plot(time_stamp, preds[f'mimic3_{_str2}'][dim],
|
605 |
+
color=(0,104/255,139/255),
|
606 |
+
label='mean_1',
|
607 |
+
linewidth=2)
|
608 |
+
ax[j, 1].fill_between(time_stamp,
|
609 |
|
610 |
+
preds[f'mimic3_{_str2}'][dim],
|
611 |
+
preds[f'styletts2_{_str2}'][dim],
|
612 |
|
613 |
+
color=(.2,.2,.2),
|
614 |
+
alpha=0.244)
|
615 |
+
# ax[j, 1].legend(['StyleTTS2 style mimic3 4x speed',
|
616 |
+
# 'StyleTTS2 style crema-d'],
|
617 |
+
# prop={'size': 10},
|
618 |
+
# # loc='upper left'
|
619 |
+
# )
|
620 |
+
ax[j, 1].set_xlabel('767 Harvard Sentences (seconds)', fontsize=16, color=(.4,.4,.4))
|
621 |
+
ax[j, 1].set_ylim([1e-7, .999])
|
622 |
+
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
623 |
+
ax[j, 1].set_xticklabels(['' for _ in ax[j, 1].get_xticklabels()])
|
624 |
+
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
625 |
+
ax[j, 0].grid()
|
626 |
+
ax[j, 1].grid()
|
627 |
+
plt.savefig(f'pair_{_str1}_{_str2}.png', bbox_inches='tight')
|
628 |
+
plt.close()
|
models.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#coding:utf-8
|
2 |
+
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import math
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
|
15 |
+
from Utils.ASR.models import ASRCNN
|
16 |
+
from Utils.JDC.model import JDCNet
|
17 |
+
|
18 |
+
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
|
19 |
+
from Modules.diffusion.modules import Transformer1d, StyleTransformer1d
|
20 |
+
from Modules.diffusion.diffusion import AudioDiffusionConditional
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
from munch import Munch
|
25 |
+
import yaml
|
26 |
+
|
27 |
+
class LearnedDownSample(nn.Module):
|
28 |
+
def __init__(self, layer_type, dim_in):
|
29 |
+
super().__init__()
|
30 |
+
self.layer_type = layer_type
|
31 |
+
|
32 |
+
if self.layer_type == 'none':
|
33 |
+
self.conv = nn.Identity()
|
34 |
+
elif self.layer_type == 'timepreserve':
|
35 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
|
36 |
+
elif self.layer_type == 'half':
|
37 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
|
38 |
+
else:
|
39 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
return self.conv(x)
|
43 |
+
|
44 |
+
class LearnedUpSample(nn.Module):
|
45 |
+
def __init__(self, layer_type, dim_in):
|
46 |
+
super().__init__()
|
47 |
+
self.layer_type = layer_type
|
48 |
+
|
49 |
+
if self.layer_type == 'none':
|
50 |
+
self.conv = nn.Identity()
|
51 |
+
elif self.layer_type == 'timepreserve':
|
52 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
|
53 |
+
elif self.layer_type == 'half':
|
54 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
|
55 |
+
else:
|
56 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
57 |
+
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
return self.conv(x)
|
61 |
+
|
62 |
+
class DownSample(nn.Module):
|
63 |
+
def __init__(self, layer_type):
|
64 |
+
super().__init__()
|
65 |
+
self.layer_type = layer_type
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.layer_type == 'none':
|
69 |
+
return x
|
70 |
+
elif self.layer_type == 'timepreserve':
|
71 |
+
return F.avg_pool2d(x, (2, 1))
|
72 |
+
elif self.layer_type == 'half':
|
73 |
+
if x.shape[-1] % 2 != 0:
|
74 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
75 |
+
return F.avg_pool2d(x, 2)
|
76 |
+
else:
|
77 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
78 |
+
|
79 |
+
|
80 |
+
class UpSample(nn.Module):
|
81 |
+
def __init__(self, layer_type):
|
82 |
+
super().__init__()
|
83 |
+
self.layer_type = layer_type
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
if self.layer_type == 'none':
|
87 |
+
return x
|
88 |
+
elif self.layer_type == 'timepreserve':
|
89 |
+
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
|
90 |
+
elif self.layer_type == 'half':
|
91 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
92 |
+
else:
|
93 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
94 |
+
|
95 |
+
|
96 |
+
class ResBlk(nn.Module):
|
97 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
98 |
+
normalize=False, downsample='none'):
|
99 |
+
super().__init__()
|
100 |
+
self.actv = actv
|
101 |
+
self.normalize = normalize
|
102 |
+
self.downsample = DownSample(downsample)
|
103 |
+
self.downsample_res = LearnedDownSample(downsample, dim_in)
|
104 |
+
self.learned_sc = dim_in != dim_out
|
105 |
+
self._build_weights(dim_in, dim_out)
|
106 |
+
|
107 |
+
def _build_weights(self, dim_in, dim_out):
|
108 |
+
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
|
109 |
+
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
|
110 |
+
if self.normalize:
|
111 |
+
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
|
112 |
+
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
|
113 |
+
if self.learned_sc:
|
114 |
+
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
|
115 |
+
|
116 |
+
def _shortcut(self, x):
|
117 |
+
if self.learned_sc:
|
118 |
+
x = self.conv1x1(x)
|
119 |
+
if self.downsample:
|
120 |
+
x = self.downsample(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
def _residual(self, x):
|
124 |
+
if self.normalize:
|
125 |
+
x = self.norm1(x)
|
126 |
+
x = self.actv(x)
|
127 |
+
x = self.conv1(x)
|
128 |
+
x = self.downsample_res(x)
|
129 |
+
if self.normalize:
|
130 |
+
x = self.norm2(x)
|
131 |
+
x = self.actv(x)
|
132 |
+
x = self.conv2(x)
|
133 |
+
return x
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
x = self._shortcut(x) + self._residual(x)
|
137 |
+
return x / math.sqrt(2) # unit variance
|
138 |
+
|
139 |
+
class StyleEncoder(nn.Module):
|
140 |
+
def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
|
141 |
+
super().__init__()
|
142 |
+
blocks = []
|
143 |
+
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
144 |
+
|
145 |
+
repeat_num = 4
|
146 |
+
for _ in range(repeat_num):
|
147 |
+
dim_out = min(dim_in*2, max_conv_dim)
|
148 |
+
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
149 |
+
dim_in = dim_out
|
150 |
+
|
151 |
+
blocks += [nn.LeakyReLU(0.2)]
|
152 |
+
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
153 |
+
blocks += [nn.AdaptiveAvgPool2d(1)]
|
154 |
+
blocks += [nn.LeakyReLU(0.2)]
|
155 |
+
self.shared = nn.Sequential(*blocks)
|
156 |
+
|
157 |
+
self.unshared = nn.Linear(dim_out, style_dim)
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
h = self.shared(x)
|
161 |
+
h = h.view(h.size(0), -1)
|
162 |
+
s = self.unshared(h)
|
163 |
+
|
164 |
+
return s
|
165 |
+
|
166 |
+
class LinearNorm(torch.nn.Module):
|
167 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
168 |
+
super(LinearNorm, self).__init__()
|
169 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
170 |
+
|
171 |
+
torch.nn.init.xavier_uniform_(
|
172 |
+
self.linear_layer.weight,
|
173 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
174 |
+
|
175 |
+
def forward(self, x):
|
176 |
+
return self.linear_layer(x)
|
177 |
+
|
178 |
+
class ResBlk1d(nn.Module):
|
179 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
180 |
+
normalize=False, downsample='none', dropout_p=0.2):
|
181 |
+
super().__init__()
|
182 |
+
self.actv = actv
|
183 |
+
self.normalize = normalize
|
184 |
+
self.downsample_type = downsample
|
185 |
+
self.learned_sc = dim_in != dim_out
|
186 |
+
self._build_weights(dim_in, dim_out)
|
187 |
+
self.dropout_p = dropout_p
|
188 |
+
|
189 |
+
if self.downsample_type == 'none':
|
190 |
+
self.pool = nn.Identity()
|
191 |
+
else:
|
192 |
+
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
|
193 |
+
|
194 |
+
def _build_weights(self, dim_in, dim_out):
|
195 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
|
196 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
197 |
+
if self.normalize:
|
198 |
+
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
|
199 |
+
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
|
200 |
+
if self.learned_sc:
|
201 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
202 |
+
|
203 |
+
def downsample(self, x):
|
204 |
+
if self.downsample_type == 'none':
|
205 |
+
return x
|
206 |
+
else:
|
207 |
+
if x.shape[-1] % 2 != 0:
|
208 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
209 |
+
return F.avg_pool1d(x, 2)
|
210 |
+
|
211 |
+
def _shortcut(self, x):
|
212 |
+
if self.learned_sc:
|
213 |
+
x = self.conv1x1(x)
|
214 |
+
x = self.downsample(x)
|
215 |
+
return x
|
216 |
+
|
217 |
+
def _residual(self, x):
|
218 |
+
if self.normalize:
|
219 |
+
x = self.norm1(x)
|
220 |
+
x = self.actv(x)
|
221 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
222 |
+
|
223 |
+
x = self.conv1(x)
|
224 |
+
x = self.pool(x)
|
225 |
+
if self.normalize:
|
226 |
+
x = self.norm2(x)
|
227 |
+
|
228 |
+
x = self.actv(x)
|
229 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
230 |
+
|
231 |
+
x = self.conv2(x)
|
232 |
+
return x
|
233 |
+
|
234 |
+
def forward(self, x):
|
235 |
+
x = self._shortcut(x) + self._residual(x)
|
236 |
+
return x / math.sqrt(2) # unit variance
|
237 |
+
|
238 |
+
class LayerNorm(nn.Module):
|
239 |
+
def __init__(self, channels, eps=1e-5):
|
240 |
+
super().__init__()
|
241 |
+
self.channels = channels
|
242 |
+
self.eps = eps
|
243 |
+
|
244 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
245 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
x = x.transpose(1, -1)
|
249 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
250 |
+
return x.transpose(1, -1)
|
251 |
+
|
252 |
+
class TextEncoder(nn.Module):
|
253 |
+
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
254 |
+
super().__init__()
|
255 |
+
self.embedding = nn.Embedding(n_symbols, channels)
|
256 |
+
|
257 |
+
padding = (kernel_size - 1) // 2
|
258 |
+
self.cnn = nn.ModuleList()
|
259 |
+
for _ in range(depth):
|
260 |
+
self.cnn.append(nn.Sequential(
|
261 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
262 |
+
LayerNorm(channels),
|
263 |
+
actv,
|
264 |
+
nn.Dropout(0.2),
|
265 |
+
))
|
266 |
+
# self.cnn = nn.Sequential(*self.cnn)
|
267 |
+
|
268 |
+
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
269 |
+
|
270 |
+
def forward(self, x, input_lengths, m):
|
271 |
+
x = self.embedding(x) # [B, T, emb]
|
272 |
+
x = x.transpose(1, 2) # [B, emb, T]
|
273 |
+
m = m.to(input_lengths.device).unsqueeze(1)
|
274 |
+
x.masked_fill_(m, 0.0)
|
275 |
+
|
276 |
+
for c in self.cnn:
|
277 |
+
x = c(x)
|
278 |
+
x.masked_fill_(m, 0.0)
|
279 |
+
|
280 |
+
x = x.transpose(1, 2) # [B, T, chn]
|
281 |
+
|
282 |
+
input_lengths = input_lengths.cpu().numpy()
|
283 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
284 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
285 |
+
|
286 |
+
self.lstm.flatten_parameters()
|
287 |
+
x, _ = self.lstm(x)
|
288 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
289 |
+
x, batch_first=True)
|
290 |
+
|
291 |
+
x = x.transpose(-1, -2)
|
292 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
293 |
+
|
294 |
+
x_pad[:, :, :x.shape[-1]] = x
|
295 |
+
x = x_pad.to(x.device)
|
296 |
+
|
297 |
+
x.masked_fill_(m, 0.0)
|
298 |
+
|
299 |
+
return x
|
300 |
+
|
301 |
+
def inference(self, x):
|
302 |
+
x = self.embedding(x)
|
303 |
+
x = x.transpose(1, 2)
|
304 |
+
x = self.cnn(x)
|
305 |
+
x = x.transpose(1, 2)
|
306 |
+
self.lstm.flatten_parameters()
|
307 |
+
x, _ = self.lstm(x)
|
308 |
+
return x
|
309 |
+
|
310 |
+
def length_to_mask(self, lengths):
|
311 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
312 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
313 |
+
return mask
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
class AdaIN1d(nn.Module):
|
318 |
+
def __init__(self, style_dim, num_features):
|
319 |
+
super().__init__()
|
320 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
321 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
322 |
+
|
323 |
+
def forward(self, x, s):
|
324 |
+
h = self.fc(s)
|
325 |
+
h = h.view(h.size(0), h.size(1), 1)
|
326 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
327 |
+
# affine (1 + lin(x)) * inst(x) + lin(x) is this a skip connection where the weight is a lin of itself
|
328 |
+
return (1 + gamma) * self.norm(x) + beta
|
329 |
+
|
330 |
+
class UpSample1d(nn.Module):
|
331 |
+
def __init__(self, layer_type):
|
332 |
+
super().__init__()
|
333 |
+
self.layer_type = layer_type
|
334 |
+
|
335 |
+
def forward(self, x):
|
336 |
+
if self.layer_type == 'none':
|
337 |
+
return x
|
338 |
+
else:
|
339 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
340 |
+
|
341 |
+
class AdainResBlk1d(nn.Module):
|
342 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
343 |
+
upsample='none', dropout_p=0.0):
|
344 |
+
super().__init__()
|
345 |
+
self.actv = actv
|
346 |
+
self.upsample_type = upsample
|
347 |
+
self.upsample = UpSample1d(upsample)
|
348 |
+
self.learned_sc = dim_in != dim_out
|
349 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
350 |
+
self.dropout = nn.Dropout(dropout_p)
|
351 |
+
|
352 |
+
if upsample == 'none':
|
353 |
+
self.pool = nn.Identity()
|
354 |
+
else:
|
355 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
356 |
+
|
357 |
+
|
358 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
359 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
360 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
361 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
362 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
363 |
+
if self.learned_sc:
|
364 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
365 |
+
|
366 |
+
def _shortcut(self, x):
|
367 |
+
x = self.upsample(x)
|
368 |
+
if self.learned_sc:
|
369 |
+
x = self.conv1x1(x)
|
370 |
+
return x
|
371 |
+
|
372 |
+
def _residual(self, x, s):
|
373 |
+
x = self.norm1(x, s)
|
374 |
+
x = self.actv(x)
|
375 |
+
x = self.pool(x)
|
376 |
+
x = self.conv1(self.dropout(x))
|
377 |
+
x = self.norm2(x, s)
|
378 |
+
x = self.actv(x)
|
379 |
+
x = self.conv2(self.dropout(x))
|
380 |
+
return x
|
381 |
+
|
382 |
+
def forward(self, x, s):
|
383 |
+
out = self._residual(x, s)
|
384 |
+
out = (out + self._shortcut(x)) / math.sqrt(2)
|
385 |
+
return out
|
386 |
+
|
387 |
+
class AdaLayerNorm(nn.Module):
|
388 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
389 |
+
super().__init__()
|
390 |
+
self.channels = channels
|
391 |
+
self.eps = eps
|
392 |
+
|
393 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
394 |
+
|
395 |
+
def forward(self, x, s):
|
396 |
+
x = x.transpose(-1, -2)
|
397 |
+
x = x.transpose(1, -1)
|
398 |
+
|
399 |
+
h = self.fc(s)
|
400 |
+
h = h.view(h.size(0), h.size(1), 1)
|
401 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
402 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
403 |
+
|
404 |
+
|
405 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
406 |
+
x = (1 + gamma) * x + beta
|
407 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
408 |
+
|
409 |
+
class ProsodyPredictor(nn.Module):
|
410 |
+
|
411 |
+
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
412 |
+
super().__init__()
|
413 |
+
|
414 |
+
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
415 |
+
d_model=d_hid,
|
416 |
+
nlayers=nlayers,
|
417 |
+
dropout=dropout)
|
418 |
+
|
419 |
+
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
420 |
+
self.duration_proj = LinearNorm(d_hid, max_dur)
|
421 |
+
|
422 |
+
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
423 |
+
self.F0 = nn.ModuleList()
|
424 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
425 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
426 |
+
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
427 |
+
|
428 |
+
self.N = nn.ModuleList()
|
429 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
430 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
431 |
+
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
432 |
+
|
433 |
+
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
434 |
+
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
435 |
+
|
436 |
+
def F0Ntrain(self, x, s):
|
437 |
+
x, _ = self.shared(x.transpose(-1, -2))
|
438 |
+
|
439 |
+
F0 = x.transpose(-1, -2)
|
440 |
+
for block in self.F0:
|
441 |
+
F0 = block(F0, s)
|
442 |
+
F0 = self.F0_proj(F0)
|
443 |
+
|
444 |
+
N = x.transpose(-1, -2)
|
445 |
+
for block in self.N:
|
446 |
+
N = block(N, s)
|
447 |
+
N = self.N_proj(N)
|
448 |
+
|
449 |
+
return F0.squeeze(1), N.squeeze(1)
|
450 |
+
|
451 |
+
def length_to_mask(self, lengths):
|
452 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
453 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
454 |
+
return mask
|
455 |
+
|
456 |
+
class DurationEncoder(nn.Module):
|
457 |
+
|
458 |
+
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
459 |
+
super().__init__()
|
460 |
+
self.lstms = nn.ModuleList()
|
461 |
+
for _ in range(nlayers):
|
462 |
+
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
463 |
+
d_model // 2,
|
464 |
+
num_layers=1,
|
465 |
+
batch_first=True,
|
466 |
+
bidirectional=True,
|
467 |
+
dropout=dropout))
|
468 |
+
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
469 |
+
|
470 |
+
|
471 |
+
self.dropout = dropout
|
472 |
+
self.d_model = d_model
|
473 |
+
self.sty_dim = sty_dim
|
474 |
+
|
475 |
+
def forward(self, x, style, text_lengths, m):
|
476 |
+
masks = m.to(text_lengths.device)
|
477 |
+
|
478 |
+
x = x.permute(2, 0, 1)
|
479 |
+
s = style.expand(x.shape[0], x.shape[1], -1)
|
480 |
+
x = torch.cat([x, s], axis=-1)
|
481 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
482 |
+
|
483 |
+
x = x.transpose(0, 1)
|
484 |
+
input_lengths = text_lengths.cpu().numpy()
|
485 |
+
x = x.transpose(-1, -2)
|
486 |
+
|
487 |
+
for block in self.lstms:
|
488 |
+
if isinstance(block, AdaLayerNorm):
|
489 |
+
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
490 |
+
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
491 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
492 |
+
else:
|
493 |
+
x = x.transpose(-1, -2)
|
494 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
495 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
496 |
+
block.flatten_parameters()
|
497 |
+
x, _ = block(x)
|
498 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
499 |
+
x, batch_first=True)
|
500 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
501 |
+
x = x.transpose(-1, -2)
|
502 |
+
|
503 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
504 |
+
|
505 |
+
x_pad[:, :, :x.shape[-1]] = x
|
506 |
+
x = x_pad.to(x.device)
|
507 |
+
# print('Calling Duration Encoder\n\n\n\n',x.shape, x.min(), x.max())
|
508 |
+
# Calling Duration Encoder
|
509 |
+
# torch.Size([1, 640, 107]) tensor(-3.0903, device='cuda:0') tensor(2.3089, device='cuda:0')
|
510 |
+
return x.transpose(-1, -2)
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
|
515 |
+
def load_F0_models(path):
|
516 |
+
# load F0 model
|
517 |
+
|
518 |
+
F0_model = JDCNet(num_class=1, seq_len=192)
|
519 |
+
print(path, 'WHAT ARE YOU TRYING TO LOAD F0 L520')
|
520 |
+
path.replace('.t7', '.pth')
|
521 |
+
params = torch.load(path, map_location='cpu')['net']
|
522 |
+
F0_model.load_state_dict(params)
|
523 |
+
_ = F0_model.train()
|
524 |
+
|
525 |
+
return F0_model
|
526 |
+
|
527 |
+
def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
|
528 |
+
# load ASR model
|
529 |
+
def _load_config(path):
|
530 |
+
with open(path) as f:
|
531 |
+
config = yaml.safe_load(f)
|
532 |
+
model_config = config['model_params']
|
533 |
+
return model_config
|
534 |
+
|
535 |
+
def _load_model(model_config, model_path):
|
536 |
+
model = ASRCNN(**model_config)
|
537 |
+
params = torch.load(model_path, map_location='cpu')['model']
|
538 |
+
model.load_state_dict(params)
|
539 |
+
return model
|
540 |
+
|
541 |
+
asr_model_config = _load_config(ASR_MODEL_CONFIG)
|
542 |
+
asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
|
543 |
+
_ = asr_model.train()
|
544 |
+
|
545 |
+
return asr_model
|
546 |
+
|
547 |
+
def build_model(args, text_aligner, pitch_extractor, bert):
|
548 |
+
print(f'\n==============\n {args.decoder.type=}\n==============L584 models.py @ build_model()\n')
|
549 |
+
|
550 |
+
from Modules.hifigan import Decoder
|
551 |
+
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
552 |
+
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
553 |
+
upsample_rates = args.decoder.upsample_rates,
|
554 |
+
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
555 |
+
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
556 |
+
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
|
557 |
+
|
558 |
+
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
559 |
+
|
560 |
+
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
561 |
+
|
562 |
+
style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
|
563 |
+
predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
|
564 |
+
|
565 |
+
# define diffusion model
|
566 |
+
if args.multispeaker:
|
567 |
+
transformer = StyleTransformer1d(channels=args.style_dim*2,
|
568 |
+
context_embedding_features=bert.config.hidden_size,
|
569 |
+
context_features=args.style_dim*2,
|
570 |
+
**args.diffusion.transformer)
|
571 |
+
else:
|
572 |
+
transformer = Transformer1d(channels=args.style_dim*2,
|
573 |
+
context_embedding_features=bert.config.hidden_size,
|
574 |
+
**args.diffusion.transformer)
|
575 |
+
|
576 |
+
diffusion = AudioDiffusionConditional(
|
577 |
+
in_channels=1,
|
578 |
+
embedding_max_length=bert.config.max_position_embeddings,
|
579 |
+
embedding_features=bert.config.hidden_size,
|
580 |
+
embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
|
581 |
+
channels=args.style_dim*2,
|
582 |
+
context_features=args.style_dim*2,
|
583 |
+
)
|
584 |
+
|
585 |
+
diffusion.diffusion = KDiffusion(
|
586 |
+
net=diffusion.unet,
|
587 |
+
sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
|
588 |
+
sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
|
589 |
+
dynamic_threshold=0.0
|
590 |
+
)
|
591 |
+
diffusion.diffusion.net = transformer
|
592 |
+
diffusion.unet = transformer
|
593 |
+
|
594 |
+
|
595 |
+
nets = Munch(
|
596 |
+
bert=bert,
|
597 |
+
bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),
|
598 |
+
|
599 |
+
predictor=predictor,
|
600 |
+
decoder=decoder,
|
601 |
+
text_encoder=text_encoder,
|
602 |
+
|
603 |
+
predictor_encoder=predictor_encoder,
|
604 |
+
style_encoder=style_encoder,
|
605 |
+
diffusion=diffusion,
|
606 |
+
|
607 |
+
text_aligner = text_aligner,
|
608 |
+
pitch_extractor=pitch_extractor
|
609 |
+
)
|
610 |
+
|
611 |
+
return nets
|
text_utils.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import re
|
4 |
+
import codecs
|
5 |
+
# IPA Phonemizer: https://github.com/bootphon/phonemizer
|
6 |
+
|
7 |
+
_pad = "$"
|
8 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
9 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
10 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
11 |
+
|
12 |
+
# Export all symbols:
|
13 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
14 |
+
|
15 |
+
dicts = {}
|
16 |
+
for i in range(len((symbols))):
|
17 |
+
dicts[symbols[i]] = i
|
18 |
+
|
19 |
+
class TextCleaner:
|
20 |
+
def __init__(self, dummy=None):
|
21 |
+
self.word_index_dictionary = dicts
|
22 |
+
print(len(dicts))
|
23 |
+
def __call__(self, text):
|
24 |
+
indexes = []
|
25 |
+
for char in text:
|
26 |
+
try:
|
27 |
+
indexes.append(self.word_index_dictionary[char])
|
28 |
+
except KeyError:
|
29 |
+
print(text)
|
30 |
+
return indexes
|
31 |
+
|
32 |
+
|
33 |
+
# == Sentence Splitter
|
34 |
+
|
35 |
+
alphabets= "([A-Za-z])"
|
36 |
+
prefixes = "(Mr|St|Mrs|Ms|Dr)[.]"
|
37 |
+
suffixes = "(Inc|Ltd|Jr|Sr|Co)"
|
38 |
+
starters = "(Mr|Mrs|Ms|Dr|Prof|Capt|Cpt|Lt|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
|
39 |
+
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
|
40 |
+
websites = "[.](com|net|org|io|gov|edu|me)"
|
41 |
+
digits = "([0-9])"
|
42 |
+
multiple_dots = r'\.{2,}'
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def split_into_sentences(text):
|
47 |
+
"""
|
48 |
+
Split the text into sentences.
|
49 |
+
|
50 |
+
If the text contains substrings "<prd>" or "<stop>", they would lead
|
51 |
+
to incorrect splitting because they are used as markers for splitting.
|
52 |
+
|
53 |
+
:param text: text to be split into sentences
|
54 |
+
:type text: str
|
55 |
+
|
56 |
+
:return: list of sentences
|
57 |
+
:rtype: list[str]
|
58 |
+
|
59 |
+
https://stackoverflow.com/questions/4576077/how-can-i-split-a-text-into-sentences
|
60 |
+
"""
|
61 |
+
text = " " + text + " "
|
62 |
+
text = text.replace("\n"," ")
|
63 |
+
text = re.sub(prefixes,"\\1<prd>",text)
|
64 |
+
text = re.sub(websites,"<prd>\\1",text)
|
65 |
+
text = re.sub(digits + "[.]" + digits,"\\1<prd>\\2",text)
|
66 |
+
text = re.sub(multiple_dots, lambda match: "<prd>" * len(match.group(0)) + "<stop>", text)
|
67 |
+
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
|
68 |
+
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
|
69 |
+
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
|
70 |
+
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
|
71 |
+
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
|
72 |
+
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
|
73 |
+
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
|
74 |
+
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
|
75 |
+
if "”" in text: text = text.replace(".”","”.")
|
76 |
+
if "\"" in text: text = text.replace(".\"","\".")
|
77 |
+
if "!" in text: text = text.replace("!\"","\"!")
|
78 |
+
if "?" in text: text = text.replace("?\"","\"?")
|
79 |
+
text = text.replace(".",".<stop>")
|
80 |
+
text = text.replace("?","?<stop>")
|
81 |
+
text = text.replace("!","!<stop>")
|
82 |
+
text = text.replace("<prd>",".")
|
83 |
+
sentences = text.split("<stop>")
|
84 |
+
sentences = [s.strip() for s in sentences]
|
85 |
+
if sentences and not sentences[-1]: sentences = sentences[:-1]
|
86 |
+
return sentences
|
87 |
+
|
88 |
+
def store_ssml(text=None,
|
89 |
+
voice=None):
|
90 |
+
'''create ssml:
|
91 |
+
text : list of sentences
|
92 |
+
voice: https://github.com/MycroftAI/mimic3-voices
|
93 |
+
'''
|
94 |
+
print('\n___________________________\n', len(text), text[0], '\n___________________________________\n')
|
95 |
+
_s = '<speak>'
|
96 |
+
for short_text in text:
|
97 |
+
|
98 |
+
rate = min(max(.87, len(short_text) / 76), 1.14) #1.44) # 1.24 for bieber
|
99 |
+
|
100 |
+
|
101 |
+
volume = int(74 * np.random.rand() + 24)
|
102 |
+
# text = ('<speak>'
|
103 |
+
_s += f'<prosody volume=\'{volume}\'>' # THe other voice does not have volume
|
104 |
+
_s += f'<prosody rate=\'{rate}\'>'
|
105 |
+
_s += f'<voice name=\'{voice}\'>'
|
106 |
+
_s += '<s>'
|
107 |
+
_s += short_text
|
108 |
+
_s += '</s>'
|
109 |
+
_s += '</voice>'
|
110 |
+
_s += '</prosody>'
|
111 |
+
_s += '</prosody>'
|
112 |
+
_s += '</speak>'
|
113 |
+
print(len(text),'\n\n\n\n\n\n\n', _s)
|
114 |
+
|
115 |
+
with codecs.open('_tmp_ssml.txt', 'w', "utf-8-sig") as f:
|
116 |
+
f.write(_s)
|
utils.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from monotonic_align import maximum_path
|
2 |
+
from monotonic_align import mask_from_lens
|
3 |
+
from monotonic_align.core import maximum_path_c
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import copy
|
7 |
+
from torch import nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchaudio
|
10 |
+
import librosa
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from munch import Munch
|
13 |
+
|
14 |
+
def maximum_path(neg_cent, mask):
|
15 |
+
""" Cython optimized version.
|
16 |
+
neg_cent: [b, t_t, t_s]
|
17 |
+
mask: [b, t_t, t_s]
|
18 |
+
"""
|
19 |
+
device = neg_cent.device
|
20 |
+
dtype = neg_cent.dtype
|
21 |
+
neg_cent = np.ascontiguousarray(neg_cent.data.cpu().numpy().astype(np.float32))
|
22 |
+
path = np.ascontiguousarray(np.zeros(neg_cent.shape, dtype=np.int32))
|
23 |
+
|
24 |
+
t_t_max = np.ascontiguousarray(mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32))
|
25 |
+
t_s_max = np.ascontiguousarray(mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32))
|
26 |
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
27 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
28 |
+
|
29 |
+
def get_data_path_list(train_path=None, val_path=None):
|
30 |
+
if train_path is None:
|
31 |
+
train_path = "Data/train_list.txt"
|
32 |
+
if val_path is None:
|
33 |
+
val_path = "Data/val_list.txt"
|
34 |
+
|
35 |
+
with open(train_path, 'r', encoding='utf-8', errors='ignore') as f:
|
36 |
+
train_list = f.readlines()
|
37 |
+
with open(val_path, 'r', encoding='utf-8', errors='ignore') as f:
|
38 |
+
val_list = f.readlines()
|
39 |
+
|
40 |
+
return train_list, val_list
|
41 |
+
|
42 |
+
def length_to_mask(lengths):
|
43 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
44 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
45 |
+
return mask
|
46 |
+
|
47 |
+
# for norm consistency loss
|
48 |
+
def log_norm(x, mean=-4, std=4, dim=2):
|
49 |
+
"""
|
50 |
+
normalized log mel -> mel -> norm -> log(norm)
|
51 |
+
"""
|
52 |
+
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
53 |
+
return x
|
54 |
+
|
55 |
+
def get_image(arrs):
|
56 |
+
plt.switch_backend('agg')
|
57 |
+
fig = plt.figure()
|
58 |
+
ax = plt.gca()
|
59 |
+
ax.imshow(arrs)
|
60 |
+
|
61 |
+
return fig
|
62 |
+
|
63 |
+
def recursive_munch(d):
|
64 |
+
if isinstance(d, dict):
|
65 |
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
66 |
+
elif isinstance(d, list):
|
67 |
+
return [recursive_munch(v) for v in d]
|
68 |
+
else:
|
69 |
+
return d
|
70 |
+
|
71 |
+
def log_print(message, logger):
|
72 |
+
logger.info(message)
|
73 |
+
print(message)
|
74 |
+
|