import os import yaml import torch from transformers import AlbertConfig, AlbertModel class CustomAlbert(AlbertModel): def forward(self, *args, **kwargs): # Call the original forward method outputs = super().forward(*args, **kwargs) # Only return the last_hidden_state return outputs.last_hidden_state def load_plbert(log_dir): config_path = os.path.join(log_dir, "config.yml") plbert_config = yaml.safe_load(open(config_path)) albert_base_configuration = AlbertConfig(**plbert_config['model_params']) bert = CustomAlbert(albert_base_configuration) files = os.listdir(log_dir) ckpts = [] for f in os.listdir(log_dir): if f.startswith("step_"): ckpts.append(f) iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))] iters = sorted(iters)[-1] checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".pth", map_location='cpu') state_dict = checkpoint['net'] from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` if name.startswith('encoder.'): name = name[8:] # remove `encoder.` new_state_dict[name] = v del new_state_dict["embeddings.position_ids"] bert.load_state_dict(new_state_dict, strict=False) return bert